Skip to main content
Log in

Methods of modeling hydraulic heterogeneity of sedimentary formations

  • Methodology and Methods of Studies
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The approaches and methods now in use for simulating the hydraulic heterogeneity of sedimentary rocks are reviewed, classified, and described. Special attention is paid to the statistical (geostatistical) models, including the most promising hydrofacies simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baidariko, E.A., and Pozdnyakov, S.P., Simulation of liquid waste buoyancy in a deep heterogeneous aquifer, Geoekologiya, 2010, no. 6, pp. 544–554.

    Google Scholar 

  2. Bezrukov, A.V., Rykus, M.V., Davletova, A.R., and Savichev, V.I., Issues of ntroduction of multiple-point statistical methods, Nauchn.-Tekhn. vestn. OAO “NK “Rosneft’”, 2010, no. 2, pp. 2–8.

    Google Scholar 

  3. Dem’yanov, V.V., and Savel’eva, E.A., Geostatistika: teoriya i praktika (Geostatistics: Theory and Practice), Moscow: Nauka, 2010.

    Google Scholar 

  4. Dyubrul, O., Ispol’zovanie geostatistiki dlya vklyucheniya v geologicheskuyu model’ seismicheskikh dannykh (The Use of Geostatistics to Incorporate Seismic Data in Geological Models), Zeist: EAGE, 2002.

    Google Scholar 

  5. Dyubryul’, O., Geostatistika v neftyanoi geologii (Geostatistis in Petroleum Geology), Moscow: Inst. Komp. Issled., NITs “Regul. khaot. dinam., 2009.

    Google Scholar 

  6. Pinus, O.V., and Pairazyan, K.V., Geological modeling of productive strata of fluvial origin, Geol. Nefti Gaza, 2008, no. 1, pp. 25–30.

    Google Scholar 

  7. Pozdnyakov, S.P., and Bakshevskaya, V.A., Numerical analysis of macrodispersion during the pumping of a solute into an aquifer containing low-permeability inclusions, in Problemy gidrogeologii XXI veka: Nauka i obrazovanie (Issues of Geohydrology of the XXI Century: Science and Education), Moscow: RUDN, 2003, pp. 156–170.

    Google Scholar 

  8. Pozdnyakov, S.P., Bakshevskaya, V.A., Krokhicheva, I.V., Danilov, V.V., and Zubkov, A.A., Effect of schematization of sediment heterogeneity to forecasts of pollutant migration, Vestn. Mosk. Univ., Ser. 4: Geol., 2012, no. 1, pp. 40–48.

    Google Scholar 

  9. Shvidler, M.I., Statisticheskaya gidrodinamika poristykh sred (Statistical Hydrodynamics of Porous Media), Moscow: Nedra, 1985.

    Google Scholar 

  10. Shestakov, V.M., To take into account the geological heterogeneity is the key problem of hydrogeodynamics, Vestn. Mosk. Univ., Ser. 4: Geol., 2003, no. 1, pp. 25–28.

    Google Scholar 

  11. Carle, S.F., and Fogg, G.E., Modeling spatial variability with oneand multi-dimensional Markov chains, Math. Geol., 1997, vol. 29, no. 7, pp. 891–918.

    Article  Google Scholar 

  12. Carle, S.F., and Fogg, G.E., Transition probabilitybased indicator geostatistics, Math. Geol., 1996, vol. 28, no. 4, pp. 453–476.

    Article  Google Scholar 

  13. Carrera, J., Alcolea, A., Medina, A., et al., Inverse problem in hydrogeology, Hydrogeology J., 2005, vol. 13, pp. 206–222.

    Article  Google Scholar 

  14. De Marsily, G., Delay, F., Goncalves, J., et al., Dealing with spatial heterogeneity, Hydrogeology J., 2005, vol. 13, pp. 161–183.

    Article  Google Scholar 

  15. De Marsily G., Delay F., Teles V. et. al., Some current methods to represent the heterogeneity of natural media in hydrogeology, Hydrogeology, J., 1998, vol. 6, pp. 115–130.

    Article  Google Scholar 

  16. Deutsch, C., Journel, A., GSLIB: Geostatistical Software Library, New York, Oxford University Press, 1992.

    Google Scholar 

  17. Di Federico, V., Neuman, S.P., Transport in multiscale log conductivity fields with truncated power variograms, Water Resour. Res., 1998, vol. 34, no. 5, pp. 963–973.

    Article  Google Scholar 

  18. Elfeki, A., and Dekking, M., A Markov chain model for subsurface characterization: theory and applications, Math. Geol., 2001, vol. 33, no. 5, pp. 569–589.

    Article  Google Scholar 

  19. Falivene, O., Cabrera, L., Munoz, J.A., Arbues, P., Fernandez, O., and Saez, A., Statistical grid-based facies reconstruction and modelling for sedimentary bodies. Alluvial-palustrine and turbiditic examples, Geol. Acta, 2007, vol. 5, no. 3, pp. 199–230.

    Google Scholar 

  20. Gelhar, L., Stochastic subsurface hydrology, PrenticeHall, 1993.

    Google Scholar 

  21. Gelhar, L.W., Welty, C., and Rehfeldt, K.R., A critical review of data on field-scale dispersion in aquifers, Water Resour. Res., 1992, vol. 28, no. 7, pp. 1955–1974.

    Article  Google Scholar 

  22. Harp, D.R., and Vesselinov, V.V., Stochastic inverse method for estimation of geostatistical representation of hydrogeologic stratigraphy using borehole logs and pressure observations, Stochast. Environ. Res. Risk Assessment, 2010, vol. 24, no. 7, pp. 1023–1042.

    Article  Google Scholar 

  23. Huggenberger, P., and Regli, C., A sedimentological model to characterize braided river deposits for hydrogeological applications, in Braided rivers: process, deposits, ecology and management, SambrookSmith, G.H., Best, J.L., Bristow, Ch.S., and Petts, G.E., Eds., Blackwell Publishing, 2006, no. 36, pp. 51–74.

    Chapter  Google Scholar 

  24. Huysmans, M., and Dassargues, A., Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium), Hydrogeol. J., 2009, vol. 17, pp. 1901–1911.

    Article  Google Scholar 

  25. Journel, A.G., and Deutsch, C.V., Entropy and spatial disorder, Math Geol., 1993, vol. 25, no. 3, pp. 329–355.

    Article  Google Scholar 

  26. Koltermann, C.E., and Gorelick, S.M., Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches, Water Resour. Res., 1996, vol. 32, no. 9, pp. 2617–2658.

    Article  Google Scholar 

  27. Mariethoz, G., Renard, P., Cornaton, F., and Jaquet, O., Truncated plurigaussian simulations to characterize aquifer heterogeneity, Ground Water, 2009, vol. 47, no. 1, pp. 13–24.

    Article  Google Scholar 

  28. Neuman, S.P., Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Resour. Res., 1990, vol. 26, no. 8, pp. 1749–1758.

    Article  Google Scholar 

  29. Neuman, S.P., and Di Federico, V., Multifaceted nature of hydrogeologic scaling and its interpretation, Rev. Geoph., 2003, vol. 41, no. 3, pp. 1014–1045.

    Article  Google Scholar 

  30. Newman, S.P., Comments on “Longitudinal” Dispersivity Data and Implications for Scaling Behavior,” by Dirk Schulze-Makuch, May–June 2005, Ground Water, vol. 43, no. 3: 443–456, Ground Water, 2006, vol. 44, no. 2, pp. 139–141.

    Google Scholar 

  31. Park, E., Elfeki, A.M., Song, Y., and Kim, K., Generalized coupled Markov chain model for characterizing categorical variables in soil mapping, Soil Sci. Soc. Am. J., 2007, vol. 71, no. 3, pp. 909–917.

    Article  Google Scholar 

  32. Pozdniakov, S.P., and Tsang, C.F., A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium, Water Resour. Res., 2004, vol. 40, W05105, doi: 10.1029/2003WR002617.

    Article  Google Scholar 

  33. Pozdniakov, S.P., and Tsang, C.F., A semianalytical approach to spatial averaging of hydraulic conductivity in heterogeneous aquifers, J. Hydrol., 1999, vol. 216, nos. 1–2, pp. 78–98.

    Article  Google Scholar 

  34. Renard, Ph., Stochastic hydrogeology: What professionals really need?, Ground Water, 2007, vol. 45, no. 5, pp. 531–541.

    Article  Google Scholar 

  35. Schulze-Makuch, D., Longitudinal dispersivity data and implication for scaling behavior, Ground Water, 2005, vol. 43, no. 3, pp. 443–456.

    Article  Google Scholar 

  36. Sivakumar, B., Harter, T., and Zhang, H., A fractal investigation of solute travel time in a heterogeneous aquifer: transition probability/Markov chain representation, Ecolog. Model., 2005, vol. 182, nos. 3–4, pp. 355–370.

    Article  Google Scholar 

  37. Teles, V., Delay, F., and de Marsily, G., Comparison of transport simulations and equivalent dispersion coefficients in heterogeneous media generated by different numerical methods: A genesis model and a simple geostatistical sequential Gaussian simulator, Geosphere, 2006, vol. 2, no. 5, pp. 275–286.

    Article  Google Scholar 

  38. Weissmann, G.S., Carle, S.F., and Fogg, G.E., Threedimensional hydrofacies modeling based on soil surveys and transition probability geostatistics, Water Resour. Res., 1999, vol. 35, no. 6, pp. 1761–1770.

    Article  Google Scholar 

  39. Weissmann, G.S., and Fogg, G.E., Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework, J. Hydrol., 1999, vol. 226, pp. 48–65.

    Article  Google Scholar 

  40. Yong, Z., and Fogg, G.E., Simulation of multi-scale heterogeneity of porous media and parameter sensitivity analysis, Sci. China, 2003, Ser. E, vol. 46, no. 5, pp. 459–474.

    Google Scholar 

  41. Zhang, H., Harter, T., and Sivakumar, B., Nonpoint source solute transport normal to aquifer bedding in heterogeneous, Markov chain random fields, Water Resour. Res., vol. 42, p. W06403, doi: 10.1029/2004WR003808, 2006.

    Google Scholar 

  42. Zimmermann, D.A., de Marsily, G., Gotway, C.A., et al., A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow, Water Resour. Res., 1998, vol. 34, no. 6, pp. 1373–1413.

    Article  Google Scholar 

  43. Zinn, B., and Harvey, C.F., When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields, Water Resour. Res., 2003, vol. 39, no. 3, pp. 1051–1068.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bakshevskaya.

Additional information

Original Russian Text © V.A. Bakshevskaya, S.P. Pozdnyakov, 2013, published in Geoekologiya, 2012, No. 6, pp. 560–570.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakshevskaya, V.A., Pozdnyakov, S.P. Methods of modeling hydraulic heterogeneity of sedimentary formations. Water Resour 40, 767–775 (2013). https://doi.org/10.1134/S0097807813070026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807813070026

Keywords

Navigation