Skip to main content
Log in

Trends in formation of the nanocrystalline structure and cationic ordering in the Dy2O3-HfO2 (1: 1) system

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Evolution of the nanocrystalline structure of the complex oxide Dy2HfO5 in the course of thermal annealing at temperatures to 1600°C has been studied by a combination of X-ray and synchrotron methods, including traditional and anomalous X-ray diffraction, PDF, EXAFS, and SAXS. The changes in crystallite size upon annealing of the as-synthesized amorphous precursor have been analyzed in detail. The systematic distortions of a fluorite-type perfect crystal structure (space group \(Fm\bar 3m\)) related to the nonequivalence of the local environment of the Dy and Hf cations but not resulting in formation of a pyrochlore-type cationordered structure in this system have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Subramanian, G. Aravamudan, and G.V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  CAS  Google Scholar 

  2. C. R. Stanek, Ph. D. Dissertation, London, UK, 2003.

  3. A. V. Shlyakhtina and L. G. Shcherbakova, Solid State Ionics 192, 200 (2011).

    Article  CAS  Google Scholar 

  4. S. S. Sosin, L. A. Prozorov, and A. I. Smirnov, Usp. Fiz. Nauk 175, 92 (2005).

    Article  Google Scholar 

  5. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).

    Article  CAS  Google Scholar 

  6. Q. Xu, W. Pan, J. Wang, et al., J. Am. Ceram. Soc. 89, 340 (2006).

    Article  CAS  Google Scholar 

  7. V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).

    Article  CAS  Google Scholar 

  8. K. E. Sickafus, L. Minervini, R. W. Grimes, et al., Science 289, 748 (2000).

    Article  CAS  Google Scholar 

  9. S. V. Ushakov and A. Navrotsky, J. Am. Ceram. Soc. 90, 1171 (2007).

    Article  CAS  Google Scholar 

  10. V. V. Popov, Ya. V. Zubavichus, V. F. Petrunin, et al., Glass Phys. Chem. 37, 512 (2011).

    Article  CAS  Google Scholar 

  11. V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Russ. J. Inorg. Chem. 56, 1538 (2011).

    Article  CAS  Google Scholar 

  12. V. B. Glushkova and M. V. Kravchinskaya, Ceram. Int. 11, 56 (1985).

    Article  CAS  Google Scholar 

  13. B. P. Mandal, N. Garg, S. M. Sharma, et al., J. Solid State Chem. 179, 1990 (2006).

    Article  CAS  Google Scholar 

  14. A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 86–748 (2000).

    Google Scholar 

  15. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  CAS  Google Scholar 

  16. E. M. Moroz, Russ. Chem. Rev. 89, 293 (2011).

    Article  Google Scholar 

  17. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).

    Article  Google Scholar 

  18. X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl. Crystallogr. 37, 678 (2004).

    Article  CAS  Google Scholar 

  19. C. L. Farrow, P. Juhás, J. W. Liu, et al., J. Phys.: Condens. Matter 19, 335219 (2007).

    Article  CAS  Google Scholar 

  20. K. V. Klementev, J. Phys. D: Appl. Phys. 34, 209 (2001).

    Article  CAS  Google Scholar 

  21. M. Newville, J. Synchrotron Rad. 8(2), 322 (2001).

    Article  CAS  Google Scholar 

  22. A. L. Ankudinov, C. Bouldin, J. J. Rehr, et al., Phys. Rev. B 58, 7565 (1998).

    Article  CAS  Google Scholar 

  23. D. I. Svergun, A. V. Semenyuk, and L. A. Feigin, Acta Crystallogr., Sect. A 44, 244 (1988).

    Article  Google Scholar 

  24. Th. Proffen, S. J. L. Billinge, T. Egami, et al., Z. Kristallogr. 218, 132 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Popov, A.P. Menushenkov, Ya.V. Zubavichus, A.A. Veligzhanin, A.A. Yaroslavtsev, R.V. Chernikov, D.S. Leshchev, V.F. Petrunin, S.A. Korovin, J. Bednarcik, 2013, published in Zhurnal Neorganicheskoi Khimii, 2013, Vol. 58, No. 3, pp. 382–389.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.V., Menushenkov, A.P., Zubavichus, Y.V. et al. Trends in formation of the nanocrystalline structure and cationic ordering in the Dy2O3-HfO2 (1: 1) system. Russ. J. Inorg. Chem. 58, 331–337 (2013). https://doi.org/10.1134/S0036023613030121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023613030121

Keywords

Navigation