Skip to main content
Log in

“Camel nanoantibody” is an efficient tool for research, diagnostics and therapy

  • Immunologic Technology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

This short review provides an introduction to the rapidly developing field of generation and utilization of “camel nanoantibodies” (or “nanobodies”). The term “nanoantibody” or “nanobody” was given to single-domain variable fragments of special type of antibodies that naturally exist (in addition to classical types of antibodies) in blood of Camelidae family animals and in some chondrichthyan fishes. The existence of very efficient technology of nanobody generation and some very useful characteristic features promise a big potential for their use in immunobiotechnology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VH and VL:

variable (V) domain of the heavy (H) and of the light (L) chains of the conventional antibody (immunoglobulin)

CH and CL:

constant (C) domains of the heavy and of the light chains, correspondingly

HCAb:

Heavy-chain antibody consisted of a dimer of only shortened (without CH1 domain) heavy chain

VHH:

variable domain of the heavy chain of the Heavy-chain antibody (VHH is the antigen binding region, it has also other names: “nanobody”, “single domain antibody”, “nanoantibody”)

Fab (Fragment antigen binding):

antigen binding fragment of conventional antibodies

Fc (Fragment crystallizable):

the antibody fragment composed of constant domains (CH2 and CH3) is responsible for effector functions

VNAR:

variable domain of the shark new antigen receptor

CDR (Complementarity Determining Regions):

hypervariable region of the variable antibody fragment

FR (Framework Region):

conservative framework region of the variable antibody fragment.

References

  1. Porter R.R. 1973. Structural studies of immunoglobulins. Science. 180, 713–716.

    Article  CAS  PubMed  Google Scholar 

  2. Padlan E.A. 1994. Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217.

    Article  CAS  PubMed  Google Scholar 

  3. Dwek R.A., Sutton B.J., Perkins S.J., Rademacher T.W. 1984. Structure-function relationships in immunoglobulins. Biochem. Soc. Symp. 49, 123–136.

    CAS  PubMed  Google Scholar 

  4. Burton D.R. 1985. Immunoglobulin G: Functional sites. Mol. Immunol. 22, 161–206.

    Article  CAS  PubMed  Google Scholar 

  5. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Bajyana Songa E., Bendahman N., Hamers R. 1993. Naturally occurring antibodies devoid of light chains. Nature. 363, 446–448.

    Article  CAS  PubMed  Google Scholar 

  6. Greenberg A.S., Avila D., Hughes M., Hughes A., Mckinney E.C., Flajnik M.F. 1995. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature. 374, 168–173.

    Article  CAS  PubMed  Google Scholar 

  7. Rast J.P., Amemiya C.T., Litman R.T., Strong S.J., Litman G.W. 1998. Distinct patterns of IgH structure and organization in divergent lineage of chondrichthyan fishes. Immunogenetics. 47, 234–245.

    Article  CAS  PubMed  Google Scholar 

  8. Nuttall S.D., Krishnan U.V., Hattarki M., De Gori R., Irving R.A., Hudson P.J. 2001. Isolation of a new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol. Immunol. 38, 313–326.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen V.K., Hamers R., Wyns L., Muyldermans S. 1999. Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IGG2A heavy-chain antibodies. Mol. Immunol. 36, 515–524.

    Article  CAS  PubMed  Google Scholar 

  10. Woolven B.P., Frenken L., van der Logt P., Nicholls P.J. 1999. The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics. 50, 98–101.

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen V.K., Hamers R., Wyns L., Muyldermans S. 2000. Camel heavy-chain antibodies: Diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J. 19, 921–931.

    Article  CAS  PubMed  Google Scholar 

  12. De Genst E., Saerens D., Muyldermans S., Conrath K. 2006. Antibody repertoire development in camelids. Dev. Comp. Immunol. 30, 187–198.

    Article  PubMed  Google Scholar 

  13. Muyldermans S., Cambillau C., Wyns L. 2001. Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem. Sci. 26, 230–235.

    Article  CAS  PubMed  Google Scholar 

  14. Padlan E.A. 1996. X-Ray crystallography of antibodies. Adv. Protein Chem. 49, 57–133.

    Article  CAS  PubMed  Google Scholar 

  15. De Genst E., Silence K., Decanniere K., Loris R., Kinne J., Muyldermans S. 2006. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc. Natl. Acad. Sci. U.S.A. 103, 4586–4591.

    Article  PubMed  Google Scholar 

  16. Kabat E., Wu T.T., Perry H.M., Gottesman K.S., Foeller C. 1991. Sequence of Proteins of Immunological Interest. US Public Health Services Publication no. 91-3242. Bethesda, MD.

  17. Nguyen V.K., Desmyter A., Muyldermans S. 2001. Functional heavy-chain antibodies in camelidae. Adv. Immunol. 79, 261–296.

    Article  CAS  PubMed  Google Scholar 

  18. Ghassabeh G.H., Muyldermans S., Saerens D. 2010. Nanobodies, single-domain antigen-binding fragments of camelid heavy-chain antibodies. In: Current Trends in Monoclonal Antibody Development and Manufacturing. Eds. Shire S.J. et al. NY: Springer, 29–48.

    Chapter  Google Scholar 

  19. Wesolowski J., Alzogaray V., Reyelt J., et al. 2009. Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol. 198, 157–174.

    Article  CAS  PubMed  Google Scholar 

  20. Muyldermans S., Baral T.N., Retamozzo V.C., et al. 2009. Camelid immunoglobulins and nanobody technology. Vet. Immunol. Immunopathol. 128(1–3), 178–183.

    Article  CAS  PubMed  Google Scholar 

  21. de Genst E., Handelberg F., van Meirhaeghe A., Vinck S., Loris R., Wyns L., Muyldermans S. 2004. Chemical basis for the affinity maturation of a camel single domain antibody. J. Biol. Chem. 279, 53593–53601.

    Article  PubMed  Google Scholar 

  22. de Genst E., Silence K., Decanniere K., Loris R., Kinne J., Wyns L., Muyldermans S. 2005. Strong in vivo maturation compensates for structurally restricted H3 loops in antibody repertoires. J. Biol. Chem. 280, 14114–14121.

    Article  PubMed  Google Scholar 

  23. Decanniere K., Muyldermans S., Wyns L. 2000. Canonical antigen binding loop structures: More structures, more canonical classes? J. Mol. Biol. 300, 83–91.

    Article  CAS  PubMed  Google Scholar 

  24. Desmyter A., Transue T.R., Ghahroudi M., Dao-Thi M.-H., Poortmans F., Hamers R., Muyldermans S., Wyns L. 1996. Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nature Struct. Biol. 3, 8003–8011.

    Article  Google Scholar 

  25. Lauwereys M., Ghahroudi M., Desmyter A., Kinne J., Holzer W., De Genst E., Wyns L., Muyldermans S. 1998. Potent enzyme inhibitors derived from drome-dary heavy-chain antibodies. EMBO J. 17, 3512–3520.

    Article  CAS  PubMed  Google Scholar 

  26. Brissette R., Goldstein N.I. 2007. The use of phage display peptide libraries for basic and translational research. Methods Mol. Biol. 383, 203–213.

    Article  CAS  PubMed  Google Scholar 

  27. Sidhu S.S., Koide S. 2007. Phage display for engineering and analyzing protein interaction interfaces. Curr. Opin. Struct. Biol. 17, 481–487.

    Article  CAS  PubMed  Google Scholar 

  28. Hoogenboom H.R. 2005. Selecting and screening recombinant antibody libraries. Nature Biotechnol. 23, 1105–1116.

    Article  CAS  Google Scholar 

  29. Ghahroudi M.A., Desmyter A., Wyns L., Hamers R., Muyldermans S. 1997. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521–526.

    Article  Google Scholar 

  30. Saerens D., Kinne J., Bosmans E., Wernery U., Muyldermans S., Conrath K. 2004. Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J. Biol. Chem. 279, 51965–51972.

    Article  CAS  PubMed  Google Scholar 

  31. Yau K.Y., Groves M.A., Li S., Sheedly C., Lee H., Tanha J., MacKenzie C.R., Jermutus L., Hall J.C. 2003. Selection of hapten-specific single-domain anti-bodies from a non-immunized llama ribosome display library. J. Immunol. Methods. 281, 161–175.

    Article  CAS  PubMed  Google Scholar 

  32. Conrath K.E., Lauwereys M., Galleni M., Matagne A., Frere J.M., Kinne J., Wyns L., Muyldermans S. 2001. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in Camelidae. Antimicrob. Agents Chemother. 45, 2807–2812.

    Article  CAS  PubMed  Google Scholar 

  33. Vyatchanin A.S., Tillib S.V. 2008. Modifications in the phage display procedure to increase the selection efficiency of antigen-binding domains of single-chain camel antibodies. Biotekhnologiya. 4, 32–34.

    Google Scholar 

  34. Tillib S.V., Ivanova T.I., Vasilev L.A. 2010. Fingerprint-like analysis of “nanoantibody” selection by phage display method using two helper phage variants. Acta Naturae. 2, 3 (6), 100–108.

    Google Scholar 

  35. Harmsen M.M., Haad H.J. 2007. Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77(1), 13–22.

    Article  CAS  PubMed  Google Scholar 

  36. Vincke C., Loris R., Saerens D., Martinez-Rodriguez S., Muyldermans S., Conrath K. 2009. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284(5), 3273–3284.

    Article  CAS  PubMed  Google Scholar 

  37. Martin F., Volpari C., Steinkuhler C., Dimasi N., Brunetti M., Biasiol G., Altamura S., Cortese R., De Francesco R., Sollazzo M. 1997. Affinity selection of a camelized VH domain antibody inhibitor of hepatitis C virus NS3 protease. Protein Eng. 10, 607–614.

    Article  CAS  PubMed  Google Scholar 

  38. Koch-Nolte F., Reyelt J., Schlossow B., Schwarz N., Scheuplein F., Rothenburg S., Haag F., Alzogaray V., Cauerhff A., Goldbaum F.A. 2007. Single domain anti-bodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J. 21, 3490–3498.

    Article  CAS  PubMed  Google Scholar 

  39. Klooster R., Maassen B.T.H., Stam J.C., Hermans P.W., ten Haaft M.R., Detmers F.JM., de Haard H.J., Post J.A., Verrips C.T. 2007. Improved anti-IgG and HAS affinity ligands: Clinical application of VHH antibody technology. J. Immunol. Meth. 324, 1–12.

    Article  CAS  Google Scholar 

  40. Jobling S.A., Jarman C., Teh M.M., Holmberg N., Blake C., Verhoeyen M.E. 2003. Immunomodulation of enzyme function in plants by single-domain anti-body fragments. Nature Biotechnol. 21, 77–80.

    Article  CAS  Google Scholar 

  41. Gueorguieva D., Li S., Walsh N., Mukerji A., Tanha J., Pandey S. 2006. Identification of single-domain, Baxspecific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J. 20, 2636–2638.

    Article  CAS  PubMed  Google Scholar 

  42. Rothbauer U., Zolghadr K., Tillib S., Nowak D., Schermelleh L., Gahl A., Backmann N., Conrath K., Muyldermans S., Cardoso M.C., Leonhardt L. 2006. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods. 3, 887–889.

    Article  CAS  PubMed  Google Scholar 

  43. Verheesen P., de Kluijver A., van Koningsbruggen S., de Brij M., de Haard H., van Ommen C.J.B., van der Maarel S.M., Verrips T. 2006. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear poly(A)-binding protein with a single-domain intracellular antibody. Hum. Mol. Genet. 15, 105–111.

    Article  CAS  PubMed  Google Scholar 

  44. Pleschberger M., Saerens D., Weigert S., Sleytr U.B., Muyldermans S., Sara M., Egelseer E.M. 2004. An S-layer heavy chain camel antibody fusion protein for generation of a nanopatterned sensing layer to detect the prostate-specific antigen by surface plasmon resonance technology. Bioconjug. Chem. 15, 664–671.

    Article  CAS  PubMed  Google Scholar 

  45. Huang L., Reekmans G., Saerens D., Friedt J.M., Frederix F., Francis L., Muyldermans S., Campitelly A., van Hoof C. 2005. Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron. 21, 483–490.

    Article  CAS  PubMed  Google Scholar 

  46. Saerens D., Frederix F., Reekmans G., Conrath K., Jans K., Brys L., Huang L., Bosmans E., Maes G., Borghs G., Muyldermans S. 2005. Engineering camel single-domain antibodies and immobilization chemistry for human prostate-specific antigen sensing. Anal. Chem. 77, 7547–7555.

    Article  CAS  PubMed  Google Scholar 

  47. Huang Y., Verheesen P., Roussis A., et al. 2005. Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phagedisplay. Eur. J. Hum. Genet. 13, 721–730.

    Article  CAS  PubMed  Google Scholar 

  48. Vyatchanin A.S., Tillib S.V. 2008. A new approach to study cellular components associated with a certain protein. Dokl. Akad Nauk. 421, 235–238.

    CAS  Google Scholar 

  49. Cortez-Retamozo V., Backmann N., Senter P.D., Wernery U., de Baetselier P., Muyldermans S., Revets H. 2004. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64, 2853–2857.

    Article  CAS  PubMed  Google Scholar 

  50. Roovers R.C., Laeremans T., Huang L., de Taeye S., Verkleij A.J., Revets H., de Haard H.J., van Bergen en Henegouwen P.M.P. 2007. Efficient inhibition of EGFR signaling and of tumor growth by antagonistic anti-EGFR nanobodies. Cancer Immunol. Immunother. 56, 303–317.

    Article  CAS  PubMed  Google Scholar 

  51. Coppieters K., Dreier T., Silence K., de Haard H., Lauwereys M., Casteels P., Beirnaert E., Jonckheere H., van de Wiele C., Staelens L., et al. 2006. Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum. 54, 1856–1866.

    Article  CAS  PubMed  Google Scholar 

  52. Dumoulin M., Last A.M., Desmyter A., Decanniere K., Canet D., Larsson G., Spencer A., Archer D.B., Sasse J., et al. 2003. A camelid antibody fragment inhibits the formation of amyloid fibrils human lysozyme. Nature. 424, 783–788.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tillib.

Additional information

The article is published in the original.

Original Russian Text © S.V. Tillib, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 1, pp. 77–85.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillib, S.V. “Camel nanoantibody” is an efficient tool for research, diagnostics and therapy. Mol Biol 45, 66–73 (2011). https://doi.org/10.1134/S0026893311010134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311010134

Keywords

Navigation