Skip to main content
Log in

Schramm-Loewner evolution martingales in coset conformal field theory

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Schramm-Loewner evolution (SLE) and conformal field theory (CFT) are popular and widely used instruments to study critical behavior of two-dimensional models, but they use different objects. While SLE has natural connection with lattice models and is suitable for strict proofs, it lacks computational and predictive power of conformal field theory. To provide a way for the concurrent use of SLE and CFT, CFT correlation functions, which are martingales with respect to SLE, are considered. A relation between parameters of Schramm-Loewner evolution on coset space and algebraic data of coset conformal field theory is revealed. The consistency of this approach with the behavior of parafermionic and minimal models is tested. Coset models are connected with off-critical massive field theories and implications of SLE are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Schramm, Israel J. Math. 118, 221 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. L. Cardy, Ann. Phys. 318, 81 (2005); condmat/0503313.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Rohde and O. Schramm, Ann. Math. 161, 883 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bauer and D. Bernard, Phys. Rep. 432, 115 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  5. O. Schramm, arXiv: math/0602151 (2006).

  6. H. Duminil-Copin and S. Smirnov, arXiv:1109.1549 (2011).

  7. A. Belavin, A. Polyakov, and A. Zamolodchikov, Nucl. Phys. 241, 333 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. Cardy, J. Phys. A: Math. Gen. 25, L201 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. S. Smirnov, Compt. Rend. Acad. Sci. I: Math. 333, 239 (2001).

    MATH  Google Scholar 

  10. A. Nazarov, J. Phys.: Conf. Ser. 343, 012085 (2012); arXiv:1112.4354; http://stacks.iop.org/1742-6596/343/i=1/a=012085.

    Article  ADS  Google Scholar 

  11. R. Santachiara, Nucl. Phys. B 793, 396 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. V. Fateev and A. Zamolodchikov, in Physics and Mathematics of Strings, Memorial Volume for Vadim Knizhnik (1990), p. 245.

  13. T. Eguchi and S. Yang, Phys. Lett. B 224, 373 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  14. T. Hollowood and P. Mansfield, Phys. Lett. B 226, 73 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Coldea, D. Tennant, E. Wheeler, et al., Science 327, 177 (2010).

    Article  ADS  Google Scholar 

  16. N. Makarov and S. Smirnov, in Proceedings of the 16th International Congress on Mathematical Physics, Ed. by P. Exner (World Scientific, Singapore, 2010), Vol. 1, p. 362.

    Chapter  Google Scholar 

  17. J. Fuchs, B. Schellekens, and C. Schweigert, Nucl. Phys. B 461, 371 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A. Schellekens and S. Yankielowicz, Nucl. Phys. B 334, 67 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Cardy, hep-th/0411189 (2004).

  20. J. Cardy, Nucl. Phys. B 240, 514 (1984).

    Article  ADS  Google Scholar 

  21. A. Gawdzki and A. Kupiainen, Phys. Lett. B 215, 119 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Figueroa-O’Farrill, ITP Stony Brook Preprint No. ITP-SB-89-41 (New York, 1989).

  23. E. Bettelheim, I. Gruzberg, A. Ludwig, and P. Wiegmann, Phys. Rev. Lett. 95, 251601 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Alekseev, A. Bytsko, and K. Izyurov, Lett. Math. Phys. 97, 243 (2011); arXiv: 1012.3113.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. M. Picco and R. Santachiara, Phys. Rev. Lett. 100, 15704 (2008).

    Article  ADS  Google Scholar 

  26. I. Bakas, Q. Park, and H. Shin, Phys. Lett. B 372, 45 (1996).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. T. Hollowood, J. Miramontes, and Q. Park, Nucl. Phys. B 445, 451 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Q. Park, Phys. Lett. B 328, 329 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Bauer, D. Bernard, and L. Cantini, J. Stat. Mech.: Theory Exp. 2009, P07037 (2009).

    Article  MathSciNet  Google Scholar 

  30. J. Stevenson and M. Weigel, Eur. Phys. Lett. 95, 40001 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nazarov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, A. Schramm-Loewner evolution martingales in coset conformal field theory. Jetp Lett. 96, 90–93 (2012). https://doi.org/10.1134/S0021364012140093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012140093

Keywords

Navigation