Skip to main content
Log in

Simulated quantum-optical object recognition from high-resolution images

  • Algorithms for Quantum Computers
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A holographic experimental procedure assuming use of quantum states of light is simulated. It uses merely interference-based image storage and nonunitary image retrieval realized by wave function collapse. Successful results of computational view-invariant recognition of object images are presented. As in neural net theory, recognition is selective reconstruction of an image from a database of many concrete images (simultaneously stored in an associative memory) after presentation of a different version of that image. That is, in the first step, we store many high-resolution images of objects into quantum memory (a hologram). In the second step, we present a “nonlearned” noisy image version. We thereby trigger memory-influenced reorganization of the state of the system so that it finally encodes those corrected object images that correspond to the newly presented version. The holographic procedure seems to be implementable with present-day quantum optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000).

    Google Scholar 

  2. M. Andrecut and M. K. Ali, Int. J. Mod. Phys. B 17, 2447 (2003).

    ADS  MathSciNet  Google Scholar 

  3. C. Trugenberger, Phys. Rev. Lett. 87, 067901 (2001).

    Google Scholar 

  4. C. Trugenberger, Phys. Rev. Lett. 89, 277903 (2002).

    Google Scholar 

  5. D. Ventura and T. Martinez, Inf. Sci. (N.Y.) 124, 273 (2000).

    MathSciNet  Google Scholar 

  6. J. Howell, J. Yeazell, and D. Ventura, Phys. Rev. A 62, 042303 (2000).

    Google Scholar 

  7. R. Schützhold, quant-ph/0208063; M. Sasaki et al., Phys. Rev. A 64, 022 317 (2001).

  8. M. Peruš and S. Dey, Appl. Math. Lett. 13(8), 31 (2000).

    MathSciNet  Google Scholar 

  9. R. Spencer, IEEE Trans. Neural Netw. 12, 463 (2001).

    Article  Google Scholar 

  10. J. Sutherland, Int. J. Neural Syst. 1, 256 (1990).

    Article  Google Scholar 

  11. I. Averbukh, M. Shapiro, C. Leichtle, and W. Schleich, Phys. Rev. A 59, 2163 (1999); P. Len et al., J. Electron Spectrosc. 85, 145 (1997); N. Bhattacharya et al., Phys. Rev. Lett. 88, 137901 (2002).

    ADS  Google Scholar 

  12. A. Leonardis and H. Bischof, Comput. Vis. Image Underst. 78, 99 (2000).

    Google Scholar 

  13. H. Bjelkhagen and H. J. Caulfield, Selected Papers on the Fundamental Techniques in Holography (SPIE Opt. Eng. Press, Bellingham, 2001).

    Google Scholar 

  14. F. T. S. Yu and S. Jutamulia, Optical Pattern Recognition (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  15. M. Peruš and H. Bischof, in Proceedings of the 7th Joint Conference on Information Sciences, Ed. by K. Chen et al. (JCIS/Association Intell. Mach., Durham, NC, 2003), pp. 1536–1539; quant-ph/0303092.

    Google Scholar 

  16. T. C. Weinacht, J. Ahn, and P. H. Baucksbaum, Nature 397, 233 (1999).

    Article  ADS  Google Scholar 

  17. W. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).

    Google Scholar 

  18. A. Granik and H. J. Caulfield, in Holography (SPIE Opt. Eng. Press, Bellingham, WA, 1990), Vol. IS 8, pp. 33–38.

    Google Scholar 

  19. M. Peruš, Neural Netw. World 10, 1001 (2000).

    Google Scholar 

  20. A. V. Pavlov, Opt. Spektrosk. 90, 515 (2001) [Opt. Spectrosc. 90, 452 (2001)].

    Google Scholar 

  21. B. C. Travaglione and G. J. Milburn, Phys. Rev. A 63, 032301 (2001); J. L. Krause et al., Phys. Rev. Lett. 79, 4978 (1997).

  22. X. Chen and J. Yeazell, Phys. Rev. A 56, 2316 (1997).

    ADS  Google Scholar 

  23. D. Goswami, Phys. Rep. 376, 385 (2003).

    ADS  Google Scholar 

  24. D. T. Smithey et al., Phys. Rev. Lett. 70, 1244 (1993).

    Article  ADS  Google Scholar 

  25. M. Peruš, H. Bischof, and C. K. Loo, quant-ph/0401016.

  26. M. Peruš, Int. J. Computing Anticip. Sys. 13, 376 (2002).

    Google Scholar 

  27. S. Haykin, Neural Networks (MacMillan, New York, 1994).

    Google Scholar 

  28. L. Personnaz, I. Gliyon, and G. Dreyfus, Phys. Rev. A 34, 4217 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Kanter and H. Sompolinsky, Phys. Rev. A 35, 380 (1987).

    Article  ADS  Google Scholar 

  30. G. Rigatos and S. Tzafestas, in Proceedings of the 7th Joint Conference on Information Sciences, Ed. by K. Chen et al. (JCIS/Association Intell. Mach., Durham, NC, 2003), p. 1532.

    Google Scholar 

  31. T. Lee, IEEE Trans. Pattern. Anal. Mach. Intell. 18(10), 1 (1996); R. Young, Wavelet Theory and Its Applications (Kluwer, Boston, 1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Optika i Spektroskopiya, Vol. 99, No. 2, 2005, pp. 233–238.

Original English Text Copyright © 2005 by Chu Kiong Loo, Peruš, Bischof.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loo, C.K., Peruš, M. & Bischof, H. Simulated quantum-optical object recognition from high-resolution images. Opt. Spectrosc. 99, 218–223 (2005). https://doi.org/10.1134/1.2034607

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2034607

Keywords

Navigation