Skip to main content
Log in

Mechanosorption of carbon dioxide by Ca- and Mg-containing silicates and alumosilicates. Sorption of CO2 and structure-related chemical changes

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The discovery of the unusual ability of Ca- and Mg-containing silicates in certain grinding regimes to absorb carbon dioxide from the environment in amounts comparable to the mass of the ground sample has stimulated interest in the study of mechanochemical effects. The range of objects for studying natural minerals, such as labradorite (CaAl2Si2O8)0.562(NaAlSi3O8)0.438, oligoclase (CaAl2Si2O8)0.148(NaAlSi3O8)0.852, diopside CaMgSi2O6, and akermanite Ca2MgSi2O7, as well as synthetic minerals gehlenite Ca2Al2SiO7 and wollastonite CaSiO3, is expanded to develop the model of deep mechanosorption of CO2 and to derive equations that allow the kinetic analysis of the absorption of carbon dioxide by silicates in the course of mechanochemical activation to be performed. Regularities revealed previously and analogies to the processes that occur upon the dissolution of carbon dioxide in silicate melts, are generalized. Data on the absorption of carbon dioxide by Ca- and Mgcontaining silicates and alumosilicates, depending on the duration of mechanochemical activation in an AGO-2 centrifugal planetary mill in the atmosphere of CO2 at a pressure of 105 Pa, are obtained. Based on the data of X-ray phase analysis and IR spectroscopy, structural chemical changes in minerals and the forms of carbon dioxide in mechanochemically activated samples are discussed. It is shown that the intense penetration of gas molecules in particle bulk and their “dissolution” in structurally disordered silicate matrix in the form of distorted CO 2−3 ions occurs upon mechanosorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalinkina, E.V., Kalinkin, A.M., Forsling, W., and Makarov, V.N., Int. J. Miner. Process., 2001, vol. 61, p. 273.

    Article  CAS  Google Scholar 

  2. Kalinkin, A.M., Politov, A.A., Boldyrev, V.V., et al., J. Mater. Synth. Process., 2002, vol. 10, p. 59.

    Article  Google Scholar 

  3. Kalinkin, A.M., Kalinkina, E.V., and Vasil’eva, T.N., Kolloidn. Zh., 2004, vol. 66, p. 190.

    Google Scholar 

  4. Kalinkin, A.M., Kalinkina, E.V., Zalkind, O.A., and Makarova, T.I., Neorg. Mater., 2005, vol. 41, p. 1218.

    Article  Google Scholar 

  5. Kalinkin, A.M., Kalinkina, E.V., Zalkind, O.A., and Makarova, T.I., Kolloidn. Zh., 2008, vol. 70, p. 39.

    Google Scholar 

  6. Kalinkin, A.M., Kalinkina, E.V., Zalkind, O.A., and Makarov, V.N., Neorg. Mater., 2005, vol. 41, p. 566.

    Google Scholar 

  7. Bragg, W. and Claringbull, G., Crystal Structures of Minerals, London: Bell, 1965.

    Google Scholar 

  8. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Methods of Activating Chemical Processes), Novosibirsk: Nauka, 1986.

    Google Scholar 

  9. Dymov, A.M., Tekhnicheskii analiz (Technical Analysis), Moscow: Metallurgiya, 1964.

    Google Scholar 

  10. Avvakumov, E.G., Khim. Interesakh Ustoich. Razvit., 1994, vol. 2, p. 541.

    Google Scholar 

  11. Gerasimov, K.B., Gusev, A.A., Kolpakov, V.V., and Ivanov, E.Yu., Sib. Khim. Zh., 1991, no. 3, p. 140.

  12. Epel’baum, M.B., Silikatnye rasplavy s letuchimi komponentami (Silicate Melts with Volatile Components), Moscow: Nauka, 1980.

    Google Scholar 

  13. Blank, J.G. and Brooker, R.A., Rev. Mineral., 1994, vol. 30, p. 158.

    Google Scholar 

  14. Peck, J.A., Farnan, I., and Stebbins, J.F., Geochim. Cosmochim. Acta, 1988, vol. 52, p. 3017.

    Article  CAS  Google Scholar 

  15. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., in Diagrammy sostoyaniya silikatnykh sistem (Phase Diagrams of Silicate Systems), Leningrad: Nauka, 1972, no. 3.

    Google Scholar 

  16. Heinike, G., Tribochemistry, Berlin: Akademie, 1984.

    Google Scholar 

  17. Butyagin, P.Yu., Usp. Khim., 1994, vol. 63, p. 1031.

    CAS  Google Scholar 

  18. Boldyrev, V.V., Usp. Khim., 2006, vol. 75, p. 203.

    Google Scholar 

  19. Thiessen P.A., Meyer, K., and Heinike, G., Gründlagen der Tribochemie, Berlin: Akademie, 1966.

    Google Scholar 

  20. Urakaev, F.Kh. and Boldyrev, V.V., Neorg. Mater., 1999, vol. 35, p. 248.

    Google Scholar 

  21. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., in Diagrammy sostoyaniya silikatnykh sistem (Phase Diagrams of Silicate Systems), Leningrad: Nauka, 1969, no. 1.

    Google Scholar 

  22. Khodakov, G.S., Kolloidn. Zh., 1994, vol. 56, p. 113.

    CAS  Google Scholar 

  23. Rawson, H., Inorganic Glass-Forming Systems, New York: Academic, 1967.

    Google Scholar 

  24. Fine, G. and Stolper, E., Contrib. Mineral. Petrol., 1985, vol. 91, p. 105.

    Article  CAS  Google Scholar 

  25. Fine, G. and Stolper, E., Earth Planet. Sci. Lett., 1985/1986, vol. 76, p. 263.

    Article  Google Scholar 

  26. Brooker, R.A., Kohn, S.C., Holloway, J.R., and McMillan, P.F., Chem. Geol., 2001, vol. 174, p. 225.

    Article  CAS  Google Scholar 

  27. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Mosk. Gos. Univ., 1977.

    Google Scholar 

  28. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.

    Google Scholar 

  29. Botcharnikov, R., Freise, M., Holtz, F., and Behrens, H., Ann. Geophys., 2005, vol. 48, p. 633.

    Google Scholar 

  30. Kalinkin, A.M., Kolloidn. Zh., 2009, vol. 71, p. 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Kalinkin, E.V. Kalinkina, O.A. Zalkind, 2009, published in Kolloidnyi Zhurnal, 2009, Vol. 71, No. 2, pp. 194–201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinkin, A.M., Kalinkina, E.V. & Zalkind, O.A. Mechanosorption of carbon dioxide by Ca- and Mg-containing silicates and alumosilicates. Sorption of CO2 and structure-related chemical changes. Colloid J 71, 185–192 (2009). https://doi.org/10.1134/S1061933X09020069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X09020069

Keywords

Navigation