Skip to main content
Log in

Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

A feeding experiment was conducted to evaluate the supplemental effect of bile salts to a defatted soybean meal-based non-fish meal diet for rainbow trout Oncorhynchus mykiss. A fish meal-based diet (FM) and two non-fish meal diets with and without bovine bile salts (SC+B and SC, respectively) were fed to fish (13 g initial weight) for 10 weeks. Fish fed diet SC showed inferior growth and feed efficiency, while bile salt supplementation improved the parameters to the same levels as fish fed diet FM. Crude fat and starch digestibility of diet SC-fed fish decreased after the 10-week feeding trial compared to the data obtained with fish that had no experience of the diet. Total biliary bile salt content and intestinal maltase activity of fish fed diet SC were the lowest among treatments, while these parameters were improved by bile salt supplementation. Morphological changes occurred in the distal intestine and liver of the diet SC group, although the histological features of fish fed diet SC+B were similar to those of fish fed diet FM. These results suggest that bile salt supplementation to a soybean meal-based diet improves the nutrient utilization by normalizing digestive processes in rainbow trout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaushik SJ, Cravedi JP, Lalles JP, Sumpter J, Fauconneau B, Laroche M. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 1995; 133: 257–274.

    Article  CAS  Google Scholar 

  2. Watanabe T, Verakunpiriya V, Watanabe K, Kiron V, Satoh S. Feeding of rainbow trout with non-fish meal diets. Fish. Sci. 1997; 63: 258–266.

    CAS  Google Scholar 

  3. Dabrowski K, Poczyczynski P, Kock G, Berger B. Effect of partially or totally replacing fish meal protein by soybean meal protein on growth, food utilization and proteolytic enzyme activities in rainbow trout (Salmo gairdneri), New in vivo test for exocrine pancreatic secretion. Aquaculture 1989; 77: 29–49.

    Article  Google Scholar 

  4. Murai T, Ogata H, Villaneda A, Watanabe T. Utilization of soy flour by fingerling rainbow trout having different body size. Nippon Suisan Gakkaishi 1989; 55: 1067–1073.

    CAS  Google Scholar 

  5. Adelizi PD, Rosati RR, Warner K, Wu YV, Muench TR, White MR, Brown PB. Evaluation of fish-meal free diets for rainbow trout, Oncorhynchus mykiss. Aquacult. Nutr. 1998; 4: 255–262.

    Article  Google Scholar 

  6. Mambrini M, Roem AJ, Cravedi JP, Lalles JP, Kaushik SJ. Effects of replacing fish meal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J. Anim. Sci. 1999; 77: 2990–2999.

    PubMed  CAS  Google Scholar 

  7. Yamamoto T, Shima T, Furuita H, Suzuki N. Influence of feeding diets with and without fish meal by hand and by self-feeders on feed intake, growth and nutrient utilization of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 2002; 214: 289–305.

    Article  Google Scholar 

  8. Yamamoto T, Shima T, Furuita H. Antagonistic effects of branched-chain amino acids induced by excess protein-bound leucine in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2004; 232: 539–550.

    Article  CAS  Google Scholar 

  9. Yamamoto T, Kuramoto H, Furuita H, Suzuki N, Kohbara J. The effectiveness of defatted soybean meal and corn gluten meal based non-fish meal diets for fingerling rainbow trout, Oncorhynchus mykiss. Aquacult. Sci. 2003; 51: 211–217.

    CAS  Google Scholar 

  10. van den Ingh TSGAM, Krogdahl A, Olli JJ, Hendriks HGCJM, Koninkx JGJF. Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture 1991; 94: 297–305.

    Article  Google Scholar 

  11. Baeverfjord G, Krogdahl A. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J. Fish Dis. 1996; 19: 375–387.

    Article  Google Scholar 

  12. Krogdahl A, Bakke-McKellep AM, Baeverfjord G. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquacult. Nutr. 2003; 9: 361–371.

    Article  Google Scholar 

  13. Bureau DP, Harris AM, Cho CY. The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon (Oncorhynchustshawytscha) and rainbow trout (Oncorhynchus mykiss). Aquaculture 1998; 161: 27–43.

    Article  CAS  Google Scholar 

  14. Ostaszewska T, Dabrowski K, Palacios ME, Olejniczak M, Wieczorek M. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins. Aquaculture 2005; 245: 273–286.

    Article  CAS  Google Scholar 

  15. van den Ingh TSGAM, Olli JJ, Krogdahl A. Alcohol-soluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmo salar L. J. Fish Dis. 1996; 19: 47–53.

    Article  Google Scholar 

  16. Suzuki N, Yamamoto T. Histological observations of intestinal degeneration of defatted soybean meal diet and supplemental effect of soybean lecithin for fingerling rainbow trout, Oncorhynchus mykiss. J. Sch. Mar. Sci. Technol. Tokai Univ. 2004; 2: 25–36.

    Google Scholar 

  17. Olli JJ, Krogdahl A. Alcohol soluble components of soybeans seem to reduce fat digestibility in fish-meal-based diets for Atlantic salmon, Salmo salar L. Aquacult. Res. 1995; 26: 831–835.

    Article  Google Scholar 

  18. Rust MB. Nutritional physiology. In: Halver JE, Hardy RW (eds). Fish Nutrition, 3rd edn. Academic Press, San Diego, CA, 2002; 367–452.

    Google Scholar 

  19. Gargouri Y, Julien R, Pieroni G, Verger R, Sarda L. Studies on the inhibition of pancreatic and microbial lipases by soybean proteins. J. Lipid Res. 1984; 25: 1214–1221.

    PubMed  CAS  Google Scholar 

  20. Takagi S, Tiba K, Kuramoto T, Ukawa M, Goto T. Biliary bile salts reduction in red sea bream fed on soybean meal diet. Aquacult. Sci. 2002; 50: 239–240.

    CAS  Google Scholar 

  21. Yamamoto T, Akimoto A, Kishi S, Unuma T, Akiyama T. Apparent and true digestibilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream. Fish. Sci. 1998; 64: 448–458.

    CAS  Google Scholar 

  22. Somogyi M. Notes on sugar determination. J. Biol. Chem. 1952; 195: 19–23.

    CAS  Google Scholar 

  23. Mashige F, Tanaka N, Maki A, Kamei S, Yamanaka M. Direct spectrometry of total bile acids in serum. Clin. Chem. 1981; 27: 1352–1356.

    PubMed  CAS  Google Scholar 

  24. Goto T, Ui T, Une M, Kuramoto T, Kihira K, Hoshita S. Bile salt composition and distribution of the D-cysteinolic acid conjugated bile salts in fish. Fish. Sci. 1996; 62: 606–609.

    CAS  Google Scholar 

  25. Goto T, Osada Y, Funatsu H, Sugiyama H, Takagi S, Mochizuki A. Characterization of cystathionine γ-lyase in the liver of rainbow trout Oncorhynchus mykiss. Fish. Sci. 2005; 71: 245–247.

    Article  CAS  Google Scholar 

  26. Goto T, Mochizuki A, Hasumi F. Distribution and activities of enzymes involved in taurine biosynthesis in the liver of fish. Aquacult. Sci. 2002; 50: 443–449.

    CAS  Google Scholar 

  27. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am. J. Clin. Pathol. 1957; 28: 56–63.

    PubMed  CAS  Google Scholar 

  28. Bessey OA, Lowry OH, Brock MJ. A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum. J. Biol. Chem. 1946; 164: 321–329.

    CAS  Google Scholar 

  29. Tanaka S, Han LK, Zheng YN, Okuda H. Effects of the flavonoid fraction from Ginkgo biloba extract on the postprandial blood glucose elevation in rats. J. Pharm. Soc. Jpn. 2004; 124: 605–611.

    CAS  Google Scholar 

  30. Gjellesvik DR, Raae AJ, Walther BT. Partial purification and characterization of a triglyceride lipase from cod (Gadus morhua). Aquaculture 1989; 79: 177–184.

    Article  CAS  Google Scholar 

  31. Angelin B, Einarsson K, Hellstrom K. Effect of cholestyramine on bile acid kinetics in patients with portal cirrhosis of the liver. Evidence of a selective defect in the formation of cholic acid. Am. J. Dig. Dis. 1978; 23: 1115–1120.

    Article  PubMed  CAS  Google Scholar 

  32. Duane WC. Effects of soybean protein and very low dietary cholesterol on serum lipids, biliary lipids, and fecal sterols in humans. Metabolism 1999; 48: 489–494.

    Article  PubMed  CAS  Google Scholar 

  33. Lee SO, Simons AL, Murphy PA, Hendrich A. Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters. Exp. Biol. Med. 2005; 230: 472–478.

    CAS  Google Scholar 

  34. Refstie S, Sahlstrom S, Brathen E, Baeverfjord G, Krogedal P. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 2005; 246: 331–345.

    Article  CAS  Google Scholar 

  35. Anderson RL, Wolf WJ. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J. Nutr. 1995; 125: 581S-588S.

    PubMed  CAS  Google Scholar 

  36. Twibell RG, Wilson RP. Preliminary evidence that choleterol improves growth and feed intake of soybean meal-based diets in aquaria studies with juvenile channel catfish. Ictalurus punctatus. Aquaculture 2004; 236: 539–546.

    Article  CAS  Google Scholar 

  37. Evans JJ, Pasnik DJ, Peres H, Lim C, Klesius PH. No apparent differences in intestinal histology of channel catfish (Ictalurus punctatus) fed heat-treated and non-heat-treated raw soybean meal. Aquacult. Nutr. 2005; 11: 123–129.

    Article  CAS  Google Scholar 

  38. Fontagne S, Geurden I, Escaffre AM, Bergot P. Histological changes induced by dietary phospholipids in intestine and liver of common carp (Cyprinus carpio L.) larvae. Aquaculture 1998; 161: 213–223.

    Article  CAS  Google Scholar 

  39. Rumsey GL, Siwicki AK, Anderson DP, Bowser PR. Effect of soybean protein on serological response, non-specific defense mechanisms, growth and protein utilization in rainbow trout. Vet. Immunol. Immunopathol. 1994; 41: 323–339.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Suzuki, N., Furuita, H. et al. Supplemental effect of bile salts to soybean meal-based diet on growth and feed utilization of rainbow trout Oncorhynchus mykiss . Fish Sci 73, 123–131 (2007). https://doi.org/10.1111/j.1444-2906.2007.01310.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01310.x

Key words

Navigation