Skip to main content
Log in

Assessing covariate effects using Jeffreys-type prior in the Cox model in the presence of a monotone partial likelihood

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In medical studies, the monotone partial likelihood is frequently encountered in the analysis of time-to-event data using the Cox model. For example, with a binary covariate, the subjects can be classified into two groups. If the event of interest does not occur (zero event) for all the subjects in one of the groups, the resulting partial likelihood is monotone and consequently, the covariate effects are difficult to estimate. In this article, we develop both Bayesian and frequentist approaches using a data-dependent Jeffreys-type prior to handle the monotone partial likelihood problem. We first carry out an in-depth examination of the conditions of the monotone partial likelihood and then characterize sufficient and necessary conditions for the propriety of the Jeffreys-type prior. We further study several theoretical properties of the Jeffreys-type prior for the Cox model. In addition, we propose two variations of the Jeffreys-type prior: the shifted Jeffreys-type prior and the Jeffreys-type prior based on the first risk set. An efficient Markov-chain Monte Carlo algorithm is developed to carry out posterior computation. We perform extensive simulations to examine the performance of parameter estimates and demonstrate the applicability of the proposed method by analyzing real data from the SEER prostate cancer study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyersmann, J., and T. Scheike. 2013. Classical regression models for competing risks. In ed. J. P. Klein, H. C. van Houwelingen, J. G. Ibrahim, and Τ. Η. Scheike, Handbook of survival analysis, 157–77. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Bryson, M. C., and Μ. Ε. Johnson. 1981. The incidence of monotone likelihood in the Cox model. Technometrics 23:381–83.

    Article  Google Scholar 

  • Chen, M.-H., Q.-M. Shao, and J. G. Ibrahim. 2000. Monte Carlo methods in Bayesian computation. New York, NY: Springer.

    Book  Google Scholar 

  • Chen, M.-H., J. G. Ibrahim, and Q.-M. Shao. 2006. Posterior propriety and computation for the Cox regression model with applications to missing covariates. Biometrika 93:791–807.

    Article  MathSciNet  Google Scholar 

  • Chen, M.-H., J. G. Ibrahim, and Q.-M. Shao. 2009. Maximum likelihood inference for the Cox regression model with applications to missing covariates. Journal of Multivariate Analysis 100: 2018–30.

    Article  MathSciNet  Google Scholar 

  • Chen, M.-H., Μ. de Castro, Μ. Ge, and Y. Zhang. 2013. Bayesian regression models for competing risks. In ed. J. P. Klein, H. C. van Houwelingen, J. G. Ibrahim, and Τ. Η. Scheike, Handbook of survival analysis, 179–98. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Cox, D. R. 1972. Regression models and life-tables. Journal of the Royal Statistical Society Β 34:187–220.

    MathSciNet  MATH  Google Scholar 

  • Cox, D. R. 1975. Partial likelihood. Biometrika 62:269–76.

    Article  MathSciNet  Google Scholar 

  • Fine, J., and Β. Η. Lindqvist. 2014. Competing risks. Lifetime Data Analysis 20:159–60.

    Article  MathSciNet  Google Scholar 

  • Firth, D. 1993. Bias reduction of maximum likelihood estimates. Biometrika 80:27–38.

    Article  MathSciNet  Google Scholar 

  • Gaynor, J. J., E. J. Feuer, C. C. Tan, D. H. Wu, C. R Little, D. J. Straus, B. D. Clarkson, and M. F. Brennan. 1993. On the use of cause-specific failure and conditional failure probabilities: Examples from clinical oncology data. Journal of the American Statistical Association 88:400–9.

    Article  Google Scholar 

  • Ge, M., and M.-H. Chen. 2012. Bayesian inference of the fully specified subdistribution model for survival data with competing risks. Lifetime Data Analysis 18:339–63.

    Article  MathSciNet  Google Scholar 

  • Greenland, S., and M. A. Mansournia. 2015. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Statistics in Medicine 34:3133–43.

    Article  MathSciNet  Google Scholar 

  • Heinze, G., and D. Dunkler. 2008. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Statistics in Medicine 27:6455–69.

    Article  MathSciNet  Google Scholar 

  • Heinze, G., and M. Ploner. 2002. SAS and SPLUS programs to perform Cox regression without convergence problems. Computer Methods and Programs in Biomedicine 67:217–23.

    Article  Google Scholar 

  • Heinze, G., and M. Schemper. 2001. A solution to the problem of monotone likelihood in Cox regression. Biometrics 57:114–19.

    Article  MathSciNet  Google Scholar 

  • Ibrahim, J. G., and P. W. Laud. 1991. On Bayesian analysis of generalized linear models using Jeffreys’s prior. Journal of the American Statistical Association 86:981–86.

    Article  MathSciNet  Google Scholar 

  • Kalbfleisch, J. D. 1978. Non-parametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society Β 40:214–21.

    MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D., and R L. Prentice. 2011. The statistical analysis of failure time data, 2nd ed. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Ploner, M., and G. Heinze. 2010. coxphf: Cox regression with Firth’s penalized likelihood. R package version 1.05 https://doi.org/CRAN.R-project.org/package=coxphf.

  • Roberts, G. O., and J. S. Rosenthal. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18:349–67.

    Article  MathSciNet  Google Scholar 

  • Roy, V., and J. P. Hobert. 2007. Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression. Journal of the Royal Statistical Society B, 69:607–623.

    Article  MathSciNet  Google Scholar 

  • Sinha, D., J. G. Ibrahim, and M.-H. Chen. 2003. A Bayesian justification of Cox’s partial likelihood. Biometrika 90:629–41.

    Article  MathSciNet  Google Scholar 

  • Tierney, L. 1994. Markov chains for exploring posterior distributions. Annals of Statistics 22:1701–62.

    Article  MathSciNet  Google Scholar 

  • Zhang, F. 1999. Matrix theory. Basic results and techniques. New York, NY: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Chen.

Additional information

Color versions of one or more of the figures in the article can be found online at https://doi.org/www.tandfonline.com/ujsp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., de Castro, M., Schifano, E.D. et al. Assessing covariate effects using Jeffreys-type prior in the Cox model in the presence of a monotone partial likelihood. J Stat Theory Pract 12, 23–41 (2018). https://doi.org/10.1080/15598608.2017.1299058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2017.1299058

Keywords

AMS Subject Classification

Navigation