Skip to main content

Advertisement

Log in

Empirical likelihood inference for the panel count data with informative observation process

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Panel count data refer to interval-censored recurrent event data. Each study subject can only be observed at discrete time points, leading to knowledge about the total number of events occurring between observations. The observation times can be also different among subjects and carry important information about the underlying recurrent process. In this paper, an empirical likelihood (EL) method for panel count data with informative observation times is proposed. Based on the influence function, we formulate an empirical likelihood ratio for the vector of regression coefficients, and the Wilks’ theorem is established. Simulation studies are carried out to compare the performance of empirical likelihood with normal approximation methods. Finally, the EL method is compared with existing approaches, utilizing an illustrative example drawn from a bladder cancer study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10(4):1100–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen PK, Borgan O, Gill RD, Keiding N (1993) Statistical models based on counting processes. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Andrews DF, Herzberg AM (1985) Data: a collection of problems from many fields for the student and research worker. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  • Balakrishnan N, Zhao X (2009) New multi-sample nonparametric tests for panel count data. Ann Stat 37(3):1112–1149

    Article  MathSciNet  MATH  Google Scholar 

  • Buzkova P (2010) Panel count data regression with informative observation times. Int J Biostat 6(1):30

    Article  MathSciNet  Google Scholar 

  • Chen SX, Cui HJ (2006) On Bartlett correction of empirical likelihood in the presence of nuisance parameters. Bimetrika 16:1101–1115

    MATH  Google Scholar 

  • Cook RJ, Lawless JF (2007) The statistical analysis of recurrent events. Springer-Verlag, New York

    MATH  Google Scholar 

  • Dauxois J-V, Flesch A, Varron D (2016) Empirical likelihood confidence bands for mean functions of recurrent events with competing risks and a terminal event. ESAIM 20:66–94

    Article  MathSciNet  MATH  Google Scholar 

  • DiCiccio TJ, Hall P, Romano JP (1991) Empirical likelihood is Bartlett-corrrectable. Ann Stat 19:1053–1061

    Article  MATH  Google Scholar 

  • Fang S, Zhang H, Sun L, Wang D (2017) Analysis of panel count data with time-dependent covariates and informative observation process. Acta Math Appl Sin 33(1):147–156

    Article  MathSciNet  MATH  Google Scholar 

  • Fleming TR, Harrington DP (1991) Counting processes and survival analysis. In: Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, New York

  • Hall P, Scala BL (1990) Methodology and algorithms of empirical likelihood. Int Stat Rev 58:109–127

    Article  MATH  Google Scholar 

  • He S, Liang W, Shen J, Yang G (2016) Empirical likelihood for right censored lifetime data. J Am Stat Assoc 111:646–655

    Article  MathSciNet  Google Scholar 

  • He X, Tong X, Sun J, Cook R (2008) Regression analysis of multivariate panel count data. Biostatistics 9:234–248

    Article  MATH  Google Scholar 

  • He X, Tong X, Sun J (2009) Semiparametric analysis of panel count data with correlated observation and follow-up times. Lifetime Data Anal 15:177–196

    Article  MathSciNet  MATH  Google Scholar 

  • Hu S, Lin L (2012) Empirical likelihood analysis of longitudinal data involving within-subject correlation. Acta Math Appl Sin Engl Ser 28(4):731–744

    Article  MathSciNet  MATH  Google Scholar 

  • Huang CY, Wang MC, Zhang Y (2006) Analysing panel count data with informative observation times. Biometrika 93(4):763–775

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch JD, Lawless JF (1985) The analysis of panel data under a Markov assumption. J Am Stat Assoc 80:863–871

    Article  MathSciNet  MATH  Google Scholar 

  • Li N, Sun L, Sun J (2010) Semiparametric transformation models for panel count data with dependent observation process. Stat Biosci 2(2):191–210

    Article  Google Scholar 

  • Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc B 62(4):711–730

    Article  MathSciNet  MATH  Google Scholar 

  • Liu P, Zhao Y (2023) A review of recent advances in empirical likelihood. WIREs Comput Stat 15(3):e1599

    Article  MathSciNet  Google Scholar 

  • Liu W, Lu X, Xie C (2014) Empirical likelihood for the additive hazards model with current status data. Commun Stat 45(8):2720–2732

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75:237–249

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1990) Empirical likelihood ratio confidence regions. Ann Stat 18:90–120

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (1991) Empirical likelihood for linear models. Ann Stat 19:1725–1747

    Article  MathSciNet  MATH  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman and Hall-CRC, New York

    MATH  Google Scholar 

  • Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 22:300–325

    Article  MathSciNet  MATH  Google Scholar 

  • Satter F (2020) Novel empirical likelihood inference procedures for zero-inflated and right censored data and their applications. PhD Dissertation, Georgia State University

  • Shi X, Ibrahim JG, Lieberman J, Styner M, Li Y, Zhu H (2011) Two-stage empirical likelihood for longitudinal neuroimaging data. Ann Appl Stat 5:1132–1159

    Article  MathSciNet  MATH  Google Scholar 

  • Subramanian S (2007) Censored median regression and profile empirical likelihood. Stat Methodol 4(4):493–503

    Article  MathSciNet  MATH  Google Scholar 

  • Sun J, Fang HB (2003) A nonparametric test for panel count data. Biometrika 90:199–208

    Article  MathSciNet  MATH  Google Scholar 

  • Sun J, Kalbfleisch JD (1995) Estimation of the mean function of point processes based on panel count data. Stat Sin 5:279–289

    MathSciNet  MATH  Google Scholar 

  • Sun J, Tong X, He X (2007) Regression analysis of panel count data with dependent observation times. Biometrics 63:1053–1059

    Article  MathSciNet  MATH  Google Scholar 

  • Sun J, Wei LJ (2000) Regression analysis of panel count data with covariate-dependent observation and censoring times. J R Stat Soc Ser B 62:293–302

    Article  MathSciNet  Google Scholar 

  • Sun J, Zhao X (2013) Statistical analysis of panel count data. Springer, New York

    Book  MATH  Google Scholar 

  • Sun Y, Sundaram R, Zhao Y (2009) Empirical likelihood inference for the Cox model with time-dependent coefficients via local partial likelihood. Scand J Stat 36(3):444–462

    MathSciNet  MATH  Google Scholar 

  • Thall PF, Lachin JM (1988) Analysis of recurrent events: nonparametric methods for random-interval count data. J Am Stat Assoc 83:339–347

    Article  Google Scholar 

  • Therneau TM, Grambsch PM (1990) Martingale-based residuals for survival models. Biometrica 77(1):147–160

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Qian L, Carrol RJ (2010) Generalized empirical likelihood methods for analyzing longitudinal data. Biometrika 97(1):79–93

    Article  MathSciNet  MATH  Google Scholar 

  • Wellner JA, Zhang Y (2000) Two estimators of the mean of a counting process with panel count. Ann Stat 28:779–814

    Article  MathSciNet  MATH  Google Scholar 

  • Yang H, Zhao Y (2012) New empirical likelihood inference for linear transformation models. J Stat Plan Inference 142:1659–1668

    Article  MathSciNet  MATH  Google Scholar 

  • Yu W, Sun Y, Zheng M (2011) Empirical likelihood method for linear transformation models. Ann Inst Stat Math 63:331–346

    Article  MathSciNet  MATH  Google Scholar 

  • Yu W, Zhao Z, Zheng M (2012) Empirical likelihood methods based on influence functions. Stat Interface 5:355–366

    Article  MathSciNet  MATH  Google Scholar 

  • Yu X, Zhao Y (2019) Jackknife empirical likelihood inference for the accelerated failure time model. TEST 28:269–288

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang H, Zhao H, Sun J, Wang D, Kim K (2013) Regression analysis of multivariate panel count data with an informative observation process. J Multivar Anal 119:71–80

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y (2002) A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89:39–48

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y (2006) Nonparametric \(k\)-sample tests with panel count data. Biometrika 93:777–790

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Zhao Y (2013) Empirical likelihood for linear transformation models with interval-censored failure time data. J Multivar Anal 116:398–409

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao H, Li Y, Sun J (2013) Analyzing panel count data with a dependent observation process and a terminal event. Can J Stat 41(1):174–191

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao X, Tong X, Sun J (2013) Robust estimation for panel count data with informative observation times. Comput Stat Data Anal 57:33–40

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Y (2011) Empirical likelihood inference for the accelerated failure time model. Stat Probab Lett 81(5):603–610

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Y, Jinnah A (2012) Inference for Cox’s regression models via adjusted empirical likelihood. Comput Stat 27:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Y, Huang Y (2007) Test-based interval estimation under the accelerated failure time model. Commun Stat 36(3):593–605

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Y, Yang S (2012) Empirical likelihood confidence intervals for regression parameters of the survival rate. J Nonparametr Stat 24(1):59–70

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, Professor Carsten Jentsch, an associate editor, and two reviewers for the thoughtful comments and insightful suggestions, which significantly enhanced the quality and presentation of the manuscript. Dr. Faysal Satter acknowledges the financial support from the Georgia State University internal dissertation grant. Dr. Yichuan Zhao is very grateful to the support from NSF Grant (DMS-2317533) and the Simons Foundation Grant (grant number: 638679). Dr. Ni Li is also grateful to the grant support from Natural Science Foundation of Hainan Province (2019RC176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichuan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of theorems

Appendix: Proofs of theorems

We assume the following regularity conditions throughout the paper, which are similar to Li et al. (2010).

  1. (C.1)

    The covariate vector X(t) and the weight function W(t) are bounded for all \(t \in [0,\tau ]\).

  2. (C.2)

    The function g is twice continuously differentiable.

  3. (C.3)

    The function W(t) converges uniformly to a deterministic function w(t) for all \( t \in [0, \tau ] \) a.s.

  4. (C.4)

    There exists a \( \tau >0 \) such that \( Pr(C_i \ge \tau ) > 0, i = 1, \cdots , n. \)

  5. (C.5)

    The matrix \(\Sigma \) is positive definite for all \(t \in [0,\tau ]\).

  6. (C.6)

    \( A_*=E\left[ \int _0^{\tau } \{ Z(t) - {\bar{z}}(t;\gamma _0)\}^{\otimes 2} \Delta _i(t) e^{\gamma _0' Z(t)} \lambda _0(t) dt \right] \) is positive definite, where E is the expectation.

Lemma A.1

Assume that the conditions (C.1)–(C.6) hold. If \( \beta _0= (\beta _{10}', \beta _{20}')' \) are the true values of the parameters, then

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum _{i=1}^n U_{ni} (\beta _0;{\hat{\gamma }}) \overset{{\mathfrak {D}}}{\rightarrow } N(0, \Sigma ). \end{aligned}$$

Proof

Note that

$$\begin{aligned}{} & {} \sum _{i=1}^n d{\hat{M}}_i(t; \beta _0,{\hat{\gamma }}) \\{} & {} \quad = \sum _{i=1}^n \left[ Y_i(t) \Delta _i(t)dO_i(t)- g\{{{\hat{\mu }}_0(t; \beta _0,{\hat{\gamma }})}e^{\beta _0'X_i(t)}\}\Delta _i(t)e^{{\hat{\gamma }}'Z_i(t)}d{\hat{\Lambda }}_0(t;{\hat{\gamma }})\right] =0, \end{aligned}$$

and

$$\begin{aligned} \sum _{i=1}^n d{\hat{M}}^{*}_i(t;{\hat{\gamma }})= & {} \sum _{i=1}^n \left[ \Delta _i(t)dO_i(t)- \Delta _i(t)e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }})\right] \\= & {} \sum _{i=1}^n \left[ \Delta _i(t)dO_i(t)- \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} \frac{\sum _{i=1}^n \Delta _i(t) dO_i(t)}{\sum _{i=1}^n \Delta _i(t)e^{{\hat{\gamma }}'Z_i(t)}}\right] \\= & {} \sum _{i=1}^n \Delta _i(t) dO_i(t)- \sum _{i=1}^n \Delta _i(t)e^{{\hat{\gamma }}'Z_i(t)} \frac{\sum _{i=1}^n \Delta _i(t) dO_i(t)}{\sum _{i=1}^n \Delta _i(t)e^{{\hat{\gamma }}'Z_i(t)}}\\= & {} \sum _{i=1}^n \Delta _i(t) dO_i(t)-\sum _{i=1}^n \Delta _i(t) dO_i(t)\\= & {} 0. \end{aligned}$$

Since \( {\hat{\gamma }}\) is obtained by solving \( V(\gamma )=0 \) at \( \gamma ={\hat{\gamma }} \), we have (cf. pp. 148–149, Therneau and Grambsch (1990))

$$\begin{aligned} 0= & {} V({\hat{\gamma }})\\= & {} \sum _{i=1}^{n}\int _0^{\tau }\{Z_i(t)-{\bar{Z}}(t;{\hat{\gamma }})\}\Delta _i(t)dO_i(t)\\= & {} \sum _{i=1}^n \int _0^{\tau } \{ Z_i(t) - {\bar{Z}}(t;{\hat{\gamma }}) \} d{\hat{M}}_i^*(t;{\hat{\gamma }}). \end{aligned}$$

Some simple algebra leads to

$$\begin{aligned} \sum _{i=1}^n U_{ni}(\beta _0;{\hat{\gamma }})= & {} \sum _{i=1}^n\Bigg [\int _0^{\tau }W(t)\{X_i(t)-{\hat{E}}_X(t;\beta _0,{\hat{\gamma }})\}d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }})\\{} & {} -\int _0^{\tau }\frac{W(t){\hat{R}}(t;\beta _0,{\hat{\gamma }})}{S^{(0)}(t,{\hat{\gamma }})}d{\hat{M}}_i^{*}(t;{\hat{\gamma }})\\{} & {} - {\hat{P}}(\beta _0,{\hat{\gamma }}) {\hat{D}}^{-1} \int _0^{\tau } \{ Z_i(t) - {\bar{Z}}(t;{\hat{\gamma }}) \} d{\hat{M}}_i^*(t;{\hat{\gamma }}) \Bigg ] \\= & {} \sum _{i=1}^n \int _0^{\tau }W(t)\{X_i(t)-{\hat{E}}_X(t;\beta _0,{\hat{\gamma }})\}d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }})\\{} & {} - \int _0^{\tau }\frac{W(t){\hat{R}}(t;\beta _0,{\hat{\gamma }})}{{S}^{(0)}(t,{\hat{\gamma }})} \sum _{i=1}^n d{\hat{M}}_i^{*}(t;{\hat{\gamma }})\\{} & {} - {\hat{P}}(\beta _0,{\hat{\gamma }}) {\hat{D}}^{-1} \sum _{i=1}^n \int _0^{\tau } \{ Z_i(t) - {\bar{Z}}(t;{\hat{\gamma }}) \} d{\hat{M}}_i^*(t;{\hat{\gamma }})\\= & {} \sum _{i=1}^n \int _0^{\tau }W(t) X_i(t) d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }})\\{} & {} - \sum _{i=1}^n \int _0^{\tau }W(t) {\hat{E}}_X(t;\beta _0,{\hat{\gamma }}) d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }}) \\= & {} \sum _{i=1}^n \int _0^{\tau }W(t) X_i(t) d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }})\\{} & {} - \int _0^{\tau }W(t) {\hat{E}}_X(t;\beta _0,{\hat{\gamma }}) \sum _{i=1}^n d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }}) \\= & {} \sum _{i=1}^n \int _0^{\tau }W(t) X_i(t) d{\hat{M}}_i(t;\beta _0,{\hat{\gamma }})\\= & {} \sum _{i=1}^n \int _0^{\tau } W(t) X_i(t)\\{} & {} \Big [ Y_i(t) \Delta _i(t) dO_i(t) - g\{{\hat{\mu }}_0(t; \beta _0,{\hat{\gamma }}) e^{\beta _0'X_i(t)}\} \Delta _i(t)\\{} & {} e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }})\Big ]\\= & {} U(\beta _0, {\hat{\gamma }}). \end{aligned}$$

As shown in the Appendix of Li et al. (2010) that \( n^{-1/2} U(\beta _{0}; {\hat{\gamma }}) \) converges to a zero mean Gaussian distribution with covariance matrix \( \Sigma \), we have

$$\begin{aligned} \frac{1}{\sqrt{n}} \sum _{i=1}^n U_{ni} (\beta _0;{\hat{\gamma }})=\frac{1}{\sqrt{n}} U(\beta _0;{\hat{\gamma }}) \overset{{\mathfrak {D}}}{\rightarrow } N(0, \Sigma ). \end{aligned}$$

\(\square \)

Lemma A.2

Assume that the conditions (C.1)-(C.6) hold. If \( \beta _0= (\beta _{10}', \beta _{20}')' \) are the true values of the parameters, then

$$\begin{aligned} \frac{1}{n} \sum _{i=1}^n U_{ni} (\beta _0;{\hat{\gamma }}) U_{ni}' (\beta _0;{\hat{\gamma }}) \overset{p}{\rightarrow }\ \Sigma . \end{aligned}$$

Proof

It can be shown that

$$\begin{aligned}{} & {} U_{ni}(\beta _0;{\hat{\gamma }}) = {U_{0i}}(\beta _0;\gamma _0)+ \int _0^{\tau } \{W(t) - w(t) \} X_i(t) Y_i(t) \Delta _i(t) dO_i(t) \hspace{150pt}\\{} & {} \quad +(-1) \int _0^{\tau } \Big ( W(t) {\hat{E}}_X(t;\beta _0,{\hat{\gamma }}) - w(t) e_x(t) \Big ) Y_i(t) \Delta _i(t) dO_i(t) \\{} & {} \quad +(-1) \Big ( \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }}) - \\{} & {} \quad \quad \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t) \Big ) \\{} & {} \quad + \Big ( \int _0^{\tau } W(t) {\hat{E}}_X(t;\beta _0,{\hat{\gamma }}) g\{{\hat{\mu }}_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }}) - \\{} & {} \quad \quad \int _0^{\tau } w(t) e_x(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t) \Big )\\{} & {} \quad + (-1) \int _0^{\tau } \Big ( \frac{W(t){\hat{R}}(t;\beta _0,{\hat{\gamma }})}{S^{(0)}(t;{\hat{\gamma }})} - \frac{w(t) {r}(t)}{{s}^{(0)}(t;\gamma _0)} \Big ) \Delta _i(t) dO_i(t) \\{} & {} + \int _0^{\tau } \Big [ {\hat{P}}(\beta _0,{\hat{\gamma }}) {\hat{D}}^{-1} \{ Z_i(t) - {\bar{Z}}(t;{\hat{\gamma }}) \} - P(\beta _0,\gamma _0)D^{-1} \{ Z_i(t) - {\bar{z}}(t;\gamma _0) \} \Big ] \Delta _i(t) dO_i(t)\\{} & {} \quad + \Big ( \int _0^{\tau } \Big [\frac{W(t){\hat{R}}(t;\beta _0,{\hat{\gamma }})}{S^{(0)}(t{;}{\hat{\gamma }})} - {\hat{P}}(\beta _0,{\hat{\gamma }}) {\hat{D}}^{-1} \{ Z_i(t) - {\bar{Z}}(t;{\hat{\gamma }}) \} \Big ] \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }}) - \\{} & {} \quad \quad \int _0^{\tau } \Big [\frac{w(t) {r}(t)}{{s}^{(0)}(t;\gamma _0)} - {P}(\beta _0,\gamma _0) {D}^{-1} \{ Z_i(t) - {\bar{z}}(t;\gamma _0) \} \Big ] \Delta _i(t) e^{{\gamma _0}'Z_i(t)} d{\Lambda }_0(t) \Big ) \\:= & {} {U_{0i}}(\beta _0;\gamma _0)+\epsilon _{i1}+\epsilon _{i2}+\epsilon _{i3}+\epsilon _{i4}+\epsilon _{i5}+\epsilon _{i6}+\epsilon _{i7}, \end{aligned}$$

where

$$\begin{aligned} {U_{0i}}(\beta _0;\gamma _0)= & {} \int _0^{\tau } w(t)\{X_i(t) - e_x(t)\} dM_i(t; \beta _0,\gamma _0) - \int _0^{\tau } \frac{w(t) {r}(t)}{{s}^{(0)}(t;\gamma _0)} {d}{M}^{*}_i(t; \gamma _0)\\{} & {} - P(\beta _0,\gamma _0)D^{-1} \int _0^{\tau } \{ Z_i(t) - {\bar{z}}(t;\gamma _0) \}{d}{M}^{*}_i(t; \gamma _0). \end{aligned}$$

Under conditions (C.1) and (C.3), \( || \epsilon _{i1}||=o_p(1), || \epsilon _{i2}||=o_p(1), || \epsilon _{i5}||=o_p(1)\) and \(|| \epsilon _{i6}||=o_p(1) \) hold. Note that (cf. pp. 1103–1104, Andersen and Gill (1982))

$$\begin{aligned} {\hat{\Lambda }}_0(t;\gamma _0)-\Lambda _0(t)=\frac{1}{n} \sum _{i=1}^n \int _0^t \frac{dM_i^* (u)}{s^{(0)}({u};\gamma _0)}+o_p(n^{-1/2}). \end{aligned}$$

Then under conditions (C.1)-(C.3) and by the consistency of \({\hat{\mu }}_0(t) \) to \( {\mu }_0(t) \), we have

$$\begin{aligned} \epsilon _{i3}= & {} \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }}) \\{} & {} - \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t)\\= & {} \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\hat{\Lambda }}_0(t;{\hat{\gamma }})\\{} & {} - \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\Lambda }_0(t)\\{} & {} +\int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d{\Lambda }_0(t)\\{} & {} - \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t)\\= & {} \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{{\hat{\gamma }}'Z_i(t)} d[{\hat{\Lambda }}_0(t;{\hat{\gamma }})- {\Lambda }_0(t)]\\{} & {} + (1+o_p(1)) \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t)\\{} & {} - \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t)\\= & {} (1+o_p(1)) \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d[{\hat{\Lambda }}_0(t;{\hat{\gamma }})-{\Lambda }_0(t)]\\{} & {} + \int _0^{\tau } W(t) X_i(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t)\\{} & {} - \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t)+o_p(1)\\= & {} (1+o_p(1)) \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d[{\hat{\Lambda }}_0(t;{\hat{\gamma }})-{\Lambda }_0(t)]\\{} & {} + \int _0^{\tau } \Big ( W(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} - w(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Big ) \ X_i(t) \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t) +o_p(1)\\= & {} (1+o_p(1)) \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} d[{\hat{\Lambda }}_0(t;\gamma _0)-{\Lambda }_0(t)]\\{} & {} +(1+o_p(1)) \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)}d[{\hat{\Lambda }}_0(t;{\hat{\gamma }})-{\hat{\Lambda }}_0(t;\gamma _0)]\\{} & {} + \int _0^{\tau } \Big ( W(t) g\{{\hat{\mu }}_0(t)e^{\beta _0'X_i(t)}\} - w(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Big ) \ X_i(t) \Delta _i(t) e^{\gamma _0'Z_i(t)} d{\Lambda }_0(t) +o_p(1)\\= & {} (1+o_p(1)) \frac{1}{n} \int _0^{\tau } \frac{w(t) X_i(t) g\{{\mu }_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} \sum _{i=1}^n dM_i^* (t)}{s^{(0)}}\\{} & {} +(1+o_p(1)) \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)}d[{\hat{\Lambda }}_0(t;{\hat{\gamma }})-{\hat{\Lambda }}_0(t;\gamma _0)]\\{} & {} +o_p(1)\\:= & {} E_1+E_2+o_p(1). \end{aligned}$$

In the term \( E_1,\) for each i, \( w(t) X_i(t) g\{{\mu }_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} \Big / s^{(0)}(t; \gamma _0) \) is predictable and finite, and \( M_i^* (t) \) is a martingale. Then

$$\begin{aligned} \int _0^{\tau } \frac{w(t) X_i(t) g\{{\mu }_0(t)e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} \sum _{i=1}^n dM_i^* (t)}{s^{(0)}(t; \gamma _0)} \end{aligned}$$

is a martingale integral and converges to zero in probability. Also, similar to p. 300 of Fleming and Harrington (1991), the Taylor series expansion of \({\hat{\Lambda }}_0(t;{\hat{\gamma }})-{\hat{\Lambda }}_0(t;\gamma _0) \) about \( \gamma =\gamma _0 \) in the term \( E_2\) can be written as

$$\begin{aligned} H'(t; \gamma ^*) ({\hat{\gamma }} - \gamma _0), \end{aligned}$$

where \( \gamma ^* \) is on the line segment between \( {\hat{\gamma }} \) and \( \gamma _0 \) and H is defined as

$$\begin{aligned} H(t;\gamma )=- \sum _{i=1}^n \int _0^t \frac{S^{(1)}(u;\gamma ) \Delta _i(u) dO_i(u)}{n \{S^{(0)}(u;\gamma )\}^2 }. \end{aligned}$$

Following Lin et al. (2000), it can be shown that \( H(t;\gamma _0) \) converges to the following function a.e.

$$\begin{aligned} h(t;\gamma _0)=-\int _0^t \frac{s^{{(1)}}(u; \gamma _0)}{s^{{(0)}}(u; \gamma _0)} \lambda _0(u) du \end{aligned}$$

uniformly in t and

$$\begin{aligned} {\hat{\gamma }}-\gamma _0 = n^{-1} A_*^{-1} \sum _{i=1}^n \int _0^{\tau } \{ Z_i(t)- {\bar{z}}(t;\gamma _0)\} dM_i^*(t) + o_p(n^{-1/2}). \end{aligned}$$

Therefore, \({\hat{\Lambda }}_0(t;{\hat{\gamma }})-{\hat{\Lambda }}_0(t;\gamma _0) \) in the term \( E_2\) is tight and therefore equal to

$$\begin{aligned} n^{-1} h'(t;\gamma _0) A_*^{-1} \sum _{i=1}^n \int _0^{\tau } \{ Z_i(t)- {\bar{z}}(t;\gamma _0)\} dM_i^*(t) + o_p(n^{-1/2}). \end{aligned}$$

Hence,

$$\begin{aligned} E_2= & {} (1+o_p(1)) \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)}\\{} & {} [ h'(t;\gamma _0) A_*^{-1} \sum _{i=1}^n \frac{1}{n} \{ Z_i(t)- {\bar{z}}(t;\gamma _0)\} dM_i^*(t)] + o_p(n^{-1/2}), \end{aligned}$$

where \( \int _0^{\tau } w(t) X_i(t) g\{{\mu }_0(t) e^{\beta _0'X_i(t)}\} \Delta _i(t) e^{\gamma _0'Z_i(t)} [h'(t;\gamma _0) A_*^{-1} \sum _{i=1}^n \frac{1}{n} \{ Z_i(t)- {\bar{z}}(t;\gamma _0)\} d M_i^*(t)] \) is a martingale integral and converges to zero in probability. Thus, \( \epsilon _{i3} = o_p(1).\) Using similar arguments, it can be shown that \( \epsilon _{i4}=o_p(1) \) and \( \epsilon _{i7}=o_p(1).\) Therefore,

$$\begin{aligned} U_{ni}(\beta _{0};{\hat{\gamma }})={U_{0i}}(\beta _{0};\gamma _0)+o_p(1), \quad i= 1, 2, \cdots , n. \end{aligned}$$
(A.1)

Let \( {\hat{Q}}_n = {n^{-1}} \sum _{i=1}^n U_{ni}(\beta _0;{\hat{\gamma }}) (U_{0i}(\beta _0;{\hat{\gamma }}))'\) and \( {Q_n} = {n^{-1}} \sum _{i=1}^n {U_{0i}}(\beta _{0};\gamma _0) {U_{0i}}(\beta _{0};\gamma _0))'\). For any \( c \in R^p\), the following decomposition holds:

$$\begin{aligned} c' ({\hat{Q}}_n - Q_n) c= & {} c' \Big ( \frac{1}{n} \sum _{i=1}^n U_{ni}(\beta _0;{\hat{\gamma }}) (U_{ni}(\beta _0;{\hat{\gamma }}))'\\{} & {} - \frac{1}{n} \sum _{i=1}^n {U_{0i}}(\beta _{0}; \gamma _0) ({U_{0i}}(\beta _{0}; \gamma _0))' \Big )c \\= & {} \frac{1}{n} \sum _{i=1}^n [ c' U_{ni}(\beta _0;{\hat{\gamma }})-c'{U_{0i}}(\beta _{0};\gamma _0) ]^2 \\{} & {} + \frac{2}{n} \sum _{i=1}^n [ c' {U_{0i}}(\beta _{0};\gamma _0)] [c'( U_{ni}(\beta _0;{\hat{\gamma }}) - {U_{0i}}(\beta _{0};\gamma _0)) ]\\:= & {} I_1+ 2 I_2. \end{aligned}$$

Both \( I_1 \) and \( I_2 \) are \( o_p(1) \) by (A.1). As a result,

$$\begin{aligned} \frac{1}{n} \sum _{i=1}^n U_{ni}(\beta _0;{\hat{\gamma }}) U_{ni}' (\beta _0;{\hat{\gamma }})= & {} \frac{1}{n} \sum _{i=1}^n {U_{0i}}(\beta _{0};\gamma _0) {U_{0i}}'(\beta _{0};\gamma _0) + o_p(1)\\\overset{p}{\rightarrow } & {} E[{U_{0i}}(\beta _{0};\gamma _0) ({U_{0i}}(\beta _{0};\gamma _0))'] \\= & {} \Sigma . \end{aligned}$$

\(\square \)

Proof of Theorem 1

Following Owen (1988, 1990), we can prove the theorem similarly. From Lemma A.1, we have \( \underset{n \rightarrow \infty }{ \text{ lim }} {\hat{Q}}_n = \Sigma .\) As \( U_i(\beta _{0}; \gamma _0) \) are i.i.d. r.v. Then combining Owen (2001) and (A.1), we have

$$\begin{aligned} Z_n=\underset{1 \le i \le n}{\text{ max }} || U_{ni}(\beta _0;{\hat{\gamma }}) || = o_p(n^{1/2}). \end{aligned}$$

Combining Lemma A.1, Eq. (8) and Taylor expansion of \(l(\beta _{0})\), one can prove Theorem 1. The details are omitted here. \(\square \)

Proof of Theorem 2

The proof is similar to arguments from Qin and Lawless (1994), Yu et al. (2011), Yang and Zhao (2012), Zhang and Zhao (2013), and Yu and Zhao (2019). By Lemma A.1, we complete the proof of Theorem 2. The details are omitted here. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satter, F., Zhao, Y. & Li, N. Empirical likelihood inference for the panel count data with informative observation process. Stat Papers (2023). https://doi.org/10.1007/s00362-023-01506-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00362-023-01506-0

Keywords

Navigation