Skip to main content
Log in

Ecotoxicological evaluation of Harbour sediments using marine organisms from different trophic levels

  • Research Article
  • Controversies & Solutions in Environmental Sciences (Editor: Henner Hollert) Addressing Toxicity of Sediments and Soils
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, Aim and Scope

The toxicity of contaminated sediments should be evaluated considering the direct exposure of laboratory organisms to whole sediments and the indirect exposure to elutriates or extracts (Tay et al. 1992, Byrne and Halloran 1999, Nendza 2002). The alga Dunaliella tertiolecta is indicated for the use in toxicity bioassays because it is highly sensitive to several xenobiotics. Harpacticoid copepods have been already used for toxicity testing and Tigriopus fulvus is a promising Mediterranean target-species in ecotoxicology (Todaro et al. 2001, Faraponova et al. 2003, Pane et al. 2005a). In this study, the toxicity of sediments collected in harbour sites of the Northeastern Adriatic Sea was evaluated by growth inhibition test with free living and alginate-immobilized Dunaliella tertiolecta and acute toxicity test with nauplii and adult Tigriopus fulvus with the aim of pointing out the importance to utilize model organisms from different trophic levels in sediment ecotoxicology.

Methodology

Elutriates and whole sediments were tested on free living and immobilized (Pane et al. 1998) algal cells, and on laboratory reared copepods. Free-living D. tertiolecta were exposed to diluted elutriates in a static, multi-well plate system. Naalginate immobilized D. tertiolecta were placed in polystyrene inserts fitted with polyester mesh bottoms and exposed to a thin layer (2 mm) of whole sediments in multi-well plates (EPS 1992, Pane and Bertino 1999). Toxicity tests with copepods were carried out on Tigriopus fulvus nauplii (elutriates) and adults (whole sediments and elutriates). Same-aged nauplii useful for toxicity tests were obtained by egg sac detaching and consequent hatching stimulation (Pane et al. 2006). Newborn nauplii (I–II stage) were exposed to elutriates in multi-well plates provided with polystyrene inserts. Adult T. fulvus maintained in polystyrene inserts fitted with polyester mesh bottoms were placed in contact with a thin layer (2 mm) of whole sediment placed on multi-well plate bottoms. All end-points were evaluated after 96 h.

Results

In general, the effects increased with the increasing of elutriate concentration up to 50%; the stimulation or inhibition of algal growth was statistically significant in comparison to the control. The inhibiting elutriates induced EC50 variations of algal growth ranging from 66.9% to 74.3%. The mortality of T. fulvus nauplii was always < 25% after treatment with 100% elutriates and < 10% after treatment with 50% dilution; no effect was shown up with 25% dilution; therefore LC50 was not calculable. The effect of elutriates was negligible on adult copepods and LC50 values were never calculable; percent mortality always resulted in < 10% after treatment with whole sediments.

Discussion

Both experimental systems gave substantially similar results after exposition to whole sediments and elutriates. During the experiment with algal cells, the immobilization in Na-alginate and the employment of inserts which allowed the contact of organisms with sediments and their easy counting were particularly useful. Likewise, the employment of inserts of adequate mesh size in the tests with copepods allowed the contact of organisms with the sediment and made organism handling and counting easy, as well as the evaluation of mortality. The methodology here described and the utilization of the proposed test-species could have an importance also considering that the current trend in ecotoxicological research is towards finding the most appropriate organism for specific areas of concern by using indigenous species (Mariani et al. 2006) and towards the major significance of chronic and reproductive end-points.

Conclusions

Based on the above results, it can be stated that the bioassay with Dunaliella tertiolecta could be a good estimation tool for the ecotoxicological assessment of marine sediments. The immobilization of algae in Na-alginate was seen to be useful to evaluate the toxicity of whole sediments; the employment of polystyrene inserts allowed an improvement of the procedures. T. fulvus nauplii and adults, as other harpacticoids such as Tigriopus japonicus (Yoon et al. 2006), satisfy the basic criteria for the employment of a standard species in marine bioassays. To date only pelagic Acartia tonsa are utilized in the standardized procedure to evaluate the risk assessment of chemicals or wastewaters (ISO 1999). As, on the contrary, the exposure of copepods to solid-phase contaminants it is not yet standardized, the employment of polystyrene inserts improved the procedures for T. fulvus too. So, the rapidity and the possibility to solve practical problems could be the main attractive features of this technique (Pane et al. 2005a) when applied to whole sediments.

Recommendations and Perspectives

The methodology here developed being also applicable to long term and reproduction tests should be recommended because it provides relevant information in comparison with other frequently applied, standardized biotests with crustaceans (ISO 1999). The procedure has been shown to be easily applicable to selected marine organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.P.H.A. — A.W.W. — A.W.E.F. (1995): Standard methods for the examination of water and wastewater (Eaton AD, Clesceri LS, Greenberg AE, eds) American Public Health Association, Washington DC

    Google Scholar 

  • Antunes SC, Pereira R, Gonçalves F (2007): Evaluation of the Potential Toxicity (acute and chronic) of Sediments from Abandoned Uranium Mine Ponds. J Soils Sediments 7(6) 368–376

    Article  CAS  Google Scholar 

  • Apitz SE (2005): New and Recent Developments in Soil and Sediment Management, Policy and Science. Do we need a J Soils Sediments? J Soils Sediments 5, 129–133

    Article  Google Scholar 

  • ARPAL (2004): CTN-AIM Monitoraggio dei sedimenti e delle biocenosi marine. Raccolta, adeguamento ed integrazione delle informazioni

  • ASTM (1992): Designation E 1367: Standard guide for conducting 10-day static sediment toxicity tests with marine and estuarine amphipods (Vol.11.04). Philadelphia, PA: American Society for Testing and Materials

    Google Scholar 

  • Barnett CJ, Kontogiannis JE (1975): The effect of crude oil fraction on the survival of a tidepool copepod, Tigriopus californicus. Environ Pollut 8, 45–54

    Article  CAS  Google Scholar 

  • Bengtsson BE (1978): Use of a harpacticoid copepod in toxicity tests. Marine Pollut Bull 9, 238–241

    Article  CAS  Google Scholar 

  • Bigongiari N, Braida T, Pasteris A (2001): Saggio biologico con l’anfipode Corophium orientale: Metodiche ed esempi di applicazione ai sedimenti marini. Biologia Marina Mediterranea 8(2) 60–71

    Google Scholar 

  • Boyd D, Todd A, Jaagumagi R (2001): The influence of urban runoff on sediment quality and benthos in Toronto harbour. Ontario Ministry of Environment, Environmental Monitoring and Reporting Brunch, Ontario, 1–24

  • Byrne P, Halloran J (1999): Aspects of Assaying Sediment Toxicity in Irish Estuarine Ecosystems. Marine Pollut Bull 39, 97–105

    Article  CAS  Google Scholar 

  • Carli A, Balestra V, Pane L, Valente T (1989a): Rapporto di composizione percentuale degli acidi grassi nel Tigriopus fulvus delle pozze di scogliera della costa ligure (Copepoda Harpacticoida). Bollettino della Società Italiana di Biologia Sperimentale 55, 421–426

    Google Scholar 

  • Carli A, Fiori A (1977): Morphological analysis of the two Tigriopus species found along the European coasts (Copepoda Harpacticoida). Natura 68, 101–110

    Google Scholar 

  • Carli A, Mariottini GL, Pane L (1989b): Reproduction of the rockpools harpacticoid copepod Tigriopus fulvus (Fischer 1860), suitable for aquaculture. Deuxiéme Congrés International d’Aquariologie (1988), Monaco, Bulletin de l’Institut Océanographique de Monaco spécial 5, 295–300

    Google Scholar 

  • Carli A, Mariottini GL, Pane L (1995): Influence of nutrition on fecundity and survival in Tigriopus fulvus Fischer (Copepoda: Harpacticoida). Aquaculture 134, 113–119

    Article  Google Scholar 

  • Carli A, Pane L, Casareto L, Bertone S, Pruzzo C (1993): Occurrence of Vibrio alginolyticus in Ligurian coast rock pools (Tyrrhenian Sea, Italy) and its association with the copepod Tigriopus fulvus (Fischer 1860). Appl Environ Microbiol 59, 1960–1962

    Google Scholar 

  • Chapman PM (1989): Current approaches to developing sediment quality criteria. Environ Toxicol Chem 8, 589–599

    Article  CAS  Google Scholar 

  • Chapman PM, Long ER (1983): The use of bioassays as part of a comprehensive approach to marine pollution assessment. Marine Pollut Bull 14, 81–84

    Article  Google Scholar 

  • Cheung KC, Wong MH, Yung YK (2003): Toxicity assessment of sediments containing tributyltin around Hong Kong Harbour. Toxicol Letters 137, 121–131

    Article  CAS  Google Scholar 

  • Diogo JB, Natal-da-Luz T, Sousa JP, Vogt C, Nowak C (2007): Tolerance of Genetically Characterized Folsomia candida Strains to Phenmedipham Exposure. A comparison between reproduction and avoidance tests. J Soils Sediments 7(6) 388–392

    Article  CAS  Google Scholar 

  • Ducrot V, Cognat C, Mons R, Mouthon J, Garric J (2006): Development of rearing and testing protocols for a new freshwater sediment test species: the gastropod Valvata piscinalis. Chemosphere 62, 1272–1281

    Article  CAS  Google Scholar 

  • EPA (1994): Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods. 600/R-94/025

  • EPA (2001): Method for collection, storage and manipulation of sediments for chemical and toxicological analyses. Technical manual. 823-B-01-002

  • EPS (1992): Biological Test Method: Growth Inhibition Test Using the Freshwater Alga Selenastrum capricornutum. Report EPS 1/RM/25

  • Faraponova O, Todaro MA, Onorati F, Finora MG (2003): Sensibilità sesso ed età specifica di Tigriopus fulvus (Copepoda, Harpacticoida) nei confronti di due metalli pesanti (Cadmio e Rame). Biologia Marina Mediterranea 10, 679–681

    Google Scholar 

  • Green AS, Chandler GT, Piegorsch WW (1996): Life-stage-specific toxicity of sediment-associated Chlorpyrifos to a marine, infaunal copepod. Environ Toxicol Chem 15, 1182–1188

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962): Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian J Microbiol 8, 229–239

    Article  CAS  Google Scholar 

  • Hamilton MA, Russo RC, Thurston RV (1977): Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 11, 714–719; Correction 12, 417 (1978)

    Article  CAS  Google Scholar 

  • Hoke R, Ankley G (1991): Results of dieldrin sediment spiking study conducted in support of US EPA development of sediment quality criteria. In: Sediment quality criteria for the protection of benthic organisms: Dieldrin (Draft Report). Washington, DC: US Environmental Protection Agency, pp 1–52

    Google Scholar 

  • Hollert H, Ahlf W, Heise S, Manz W, Scrimshaw M, White S (2007): Controversies and Solutions in Environmental Sciences — Addressing toxicity of sediments and soils (Editorial). J Soils Sediments 7(6) 360

    Article  Google Scholar 

  • Hsu P, Matthäi A, Heise S, Ahlf W (2007): Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe Environmental Pollution 148, 817–823

    CAS  Google Scholar 

  • Hutchinson TH, Williams TD, Eales GJ (1994): Toxicity of cadmium, hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus) and copepods (Tisbe battagliai). Marine Environmental Research 38, 275–290

    Article  CAS  Google Scholar 

  • IRSA-CNR (1978): Metodologia di saggio algale per lo studio della contaminazione delle acque marine. Quaderni dell’Istituto di Ricerca sulle Acque, 39. IRSA-CNR Milano

  • ISO (1999): Water quality — Determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea). International standard 14669

  • Kosmehl T, Krebs F, Manz W, Braunbeck T, Hollert H (2007): Differentiation Between Bioavailable and Total Hazard Potential of Sediment Induced DNA Fragmentation as Measured by the Comet Assay with Zebrafish Embryos. J Soils Sediments 7(6) 377–387

    Article  CAS  Google Scholar 

  • Mariani L, De Pascale D, Faraponova O, Tornambè A, Sarni A, Giuliani S, Ruggiero G, Onorati F, Magaletti E (2006): The use of a battery test in marine ecotoxicology: The acute toxicity of sodium dodecyl sulfate. Environ Toxicol, special issue 21, 373–379

    CAS  Google Scholar 

  • Miliou H, Verriopoulos G, Maroulis D, Bouloukos D, Moraitou-Apostolopoulou M (2000): Influence of life history adaptations on the fidelity of laboratory bioassays for the impact of heavy metals (Co2+ and Cr6+) on the tolerance and population dynamics of Tisbe holothuriae. Marine Pollut Bull 40, 352–359

    Article  CAS  Google Scholar 

  • Moreira SM, Guilhermino L, Ribeiro R (2006): An in situ assay with the microalga Phaeodactylum tricornutum for sediment-overlying water toxicity evaluations in estuaries. Environ Toxicol Chem 25, 2272–2279

    Article  CAS  Google Scholar 

  • Nendza M (2002): Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere 48, 865–883

    Article  CAS  Google Scholar 

  • Norr C, Riepert F (2007): Bioaccumulation Studies with Eisenia fetida Using an Established Degradation Test System. J Soils Sediments 7(6) 393–397

    Article  CAS  Google Scholar 

  • OECD (1984): Alga Growth Inhibition Test. OECD Guideline for Testing of Chemicals 201. Paris, France

  • Onorati F, Bigongiari N, Pellegrini D, Giuliani S (1999): The suitability of Corophium orientale (Crustacea, Amphipoda) in harbour sediment toxicity bioassessment. Aquatic Ecosystem, Health Management 2, 465–473

    Article  CAS  Google Scholar 

  • Onorati F, Volpi Ghirardini A (2001): Informazioni fornite dalle diverse matrici da testare con i saggi biologici: applicabilityà di Vibrio fischeri. Biologia Marina Mediterranea 8(2) 31–40

    Google Scholar 

  • Pane L, Bertino C (1999): Immobilizzazione di alghe fitoplanctoniche in alginato di calcio e colture in piastra. Biologi Italiani 29, 9–14

    Google Scholar 

  • Pane L, Boccardo S, Bonfiglioli F, Mariottini GL, Priano F, Conio O (2005b): Polycyclic aromatic hydrocarbons in water, seston and copepods in a harbour area in the Western Mediterranean (Ligurian Sea). Marine Ecol 26, 89–99

    Article  CAS  Google Scholar 

  • Pane L, De Nuccio L, Bozzolasco M, Mariottini GL, Debbia E (2003): Studio dell’associazione zooplancton-batteri in un’area neritica del Golfo di Genova (Mar Ligure). Biologia Marina Mediterranea 10, 1022–1025

    Google Scholar 

  • Pane L, De Nuccio L, Pruzzo C, Carli A (2000): Adhesion of bacteria and diatoms to the exoskeleton of the harpacticoid copepod Tigriopus fulvus in culture: electron and epifluorescent microscopy study. J Biol Res 76, 37–43

    CAS  Google Scholar 

  • Pane L, Feletti M, Bertino C, Carli A (1998): Viability of the marine microalga Tetraselmis suecica grown free and immobilized in alginate beads. Aquaculture International 6, 411–420

    Article  Google Scholar 

  • Pane L, Giacco E, Mariottini GL (2005a): Acute and chronic heavy metal bioassay on Tigriopus fulvus Fischer (Copepoda: Harpacticoida). 13th Symposium PRIMO 13, Pollutant response in marine organisms, Alessandria, Italy. June 19–22, 2005, 113

  • Pane L, Giacco E, Mariottini GL (2006): Utilizzo di Tigriopus fulvus (Copepoda: Harpacticoida) in ecotossicologia. Saggi con disperdenti e tensioattivi. Biologia Marina Mediterranea 13(2) 348–349

    Google Scholar 

  • Penttinen O-P, Kilpi-Koski J, Jokela M, Toivainen K, Väisänen A (2008): Importance of Dose Metrics for Lethal and Sublethal Sediment Metal Toxicity in the Oligochaete Worm Lumbriculus variegatus. J Soils Sediments 8(1) 59–66

    Article  CAS  Google Scholar 

  • Peters C, Becker S, Noack U, Pfitzner S, Bülow W, Barz K, Ahlf W, Berghahn R (2002): A marine bioassay test set to assess marine water and sediment quality. Its need, the approach and first results. Ecotoxicol 11, 379–383

    Article  CAS  Google Scholar 

  • Plesha PD, Stein JE, Schiewe MH, McCain BB, Varanasi U (1988): Toxicity of marine sediments supplemented with mixtures of selected chlorinated and aromatic hydrocarbons to the infaunal amphipod Rhepoxynius abronius. Marine Environ Res 25, 85–97

    Article  CAS  Google Scholar 

  • Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee J-S (2007): The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquatic Toxicol 83, 161–173

    Article  CAS  Google Scholar 

  • Richter S, Nagel R (2007): Bioconcentration, biomagnification and metabolism of 14C-terbutryn and 14C-benzo[a]pyrene in Gammarus fossarum and Asellus aquaticus Chemosphere 66, 603–610

    CAS  Google Scholar 

  • Salomons W, De Rooij NM, Kerdijk H, Bril J (1987): Sediments as a source for contaminants. Hydrobiologia, 149, 13–30

    Article  CAS  Google Scholar 

  • Saraiva MC (1973): Étude sur la radiosensibilité d’un copépode benthique, Tigriopus fulvus (Fischer). Journal du Conseil International pour l’Exploration de la Mer 35, 7–12

    Google Scholar 

  • Sbrilli G, Limberti A, Caldini G, Corsini A (1998): Metodologia di saggio algale per il controllo dei corpi idrici e delle acque di scarico. ARPAT Firenze, pp 1–191

  • Scarlett A, Galloway TS, Rowland SJ (2007): Chronic Toxicity of Unresolved Complex Mixtures (UCM) of Hydrocarbons in Marine Sediments. J Soils Sediments 7(4) 200–206

    Article  CAS  Google Scholar 

  • Schulze T, Ricking M, Schröter-Kermani C, Körner A, Denner H-D, Weinfurtner K, Winkler A, Pekdeger A (2007): The German Environmental Specimen Bank. Sampling, processing, and archiving sediment and suspended particulate matter. J Soils Sediments 7(6) 361–367

    Article  CAS  Google Scholar 

  • Scrimshaw M, White S, Manz W, Hollert H, Ahlf W, Heise S (2006): Sediment-related Discussions at the 16th SETAC Europe Annual Meeting. J Soils Sediments 6(2) 116–117

    Article  Google Scholar 

  • Swartz RC, Kemp PF, Schultz DW, Lamberson JO (1988): Effects of mixtures of sediment contaminants on the marine infaunal amphipod, Rhepoxinius abronius. Environ Toxicol Chem 7, 1013–1020

    Article  CAS  Google Scholar 

  • Swartz RC, Schults DW, Ozretich RJ, Lamberson JO, Cole FA, De Witt TH, Redmond MS, Ferraro SP (1995): PAH: a model to predict the toxicity of polynuclear aromatic hydro-carbon mixtures in field-collected sediments. Environ Toxicol Chem 14, 1977–1987

    Article  CAS  Google Scholar 

  • Swartz RC, Schultz DW, De Witt TH, Ditsworth GR, Lamberson JO (1990): Toxicity of fluoranthene in sediment to marine amphipods: a test of the equilibrium partitioning approach to sediment quality criteria. Environmental Toxicology and Chemistry 9, 1071–1080

    Article  CAS  Google Scholar 

  • Tay KL, Doe KG, Wade SJ, Vaughan DA, Berrigan RE, Moore MJ (1992): Sediment bioassessment in Halifax Harbour. Environ Toxicol Chem 11, 1567–1581

    Article  CAS  Google Scholar 

  • Telli-Karakoç F, Gaines AF, Hewer A, Phillips D (2001): Differences between blood and liver aromatic DNA adduct formation. Environ International 26,143–148

    Article  Google Scholar 

  • Tessier A, Campbell PGC (1987): Partitioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia, 149, 43–52

    Article  CAS  Google Scholar 

  • Thompson B, Anderson B, Hunt J, Taberski K, Phillips B (1999): Relationships between sediment contamination and toxicity in San Francisco Bay. Marine Environmental Research 48, 285–309

    Article  CAS  Google Scholar 

  • Todaro MA, Faraponova O, Onorati F, Pellegrini D, Tongiorgi P (2001): Tigriopus fulvus (Copepoda, Harpacticoida) una possibile specie-target nella valutazione della tossicità dei fanghi portuali: ciclo vitale e prove tossicologiche preliminari. Biologia Marina Mediterranea 8, 869–872

    Google Scholar 

  • UNI EN ISO 10253 (2000): Saggio di inibizione della crescita di alghe marine con Skeletonema costatum e Phaeodactylum tricornutum. pp 1–14

  • Yoon S-J, Park G-S, Oh J-H, Kang Y-S, Park S-Y (2006): Marine ecotoxicological assessment using the harpacticoid copepod Tigriopus japonicus. SETAC Europe 16th Annual Meeting 7–11 May 2006, The Hague, The Netherlands

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Luigi Mariottini.

Additional information

ESS-Submission Editor: Prof. Dr. Henner Hollert (henner.hollert@bio5.rwth-aachen.de)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pane, L., Giacco, E., Corrà, C. et al. Ecotoxicological evaluation of Harbour sediments using marine organisms from different trophic levels. J Soils Sediments 8, 74–79 (2008). https://doi.org/10.1065/jss2008.02.272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/jss2008.02.272

Keywords

Navigation