Skip to main content

Advertisement

Log in

Biogeography of soil microbial communities: a review and a description of the ongoing french national initiative

  • Review article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Microbial biogeography is the study of the distribution of microbial diversity on large scales of space and time. This science aims at understanding biodiversity regulation and its link with ecosystem biological functioning, goods and services such as maintenance of productivity, of soil and atmospheric quality, and of soil health. Although the initial concept dates from the early 20th century (Beijerinck (1913) De infusies en de ontdekking der backterien, in: Jaarboek van de Knoniklijke Akademie van Wetenschappen, Muller, Amsterdam), only recently have an increasing number of studies have investigated the biogeographical patterns of soil microbial diversity. A such delay is due to the constraints of the microbial models, the need to develop relevant molecular and bioinformatic tools to assess microbial diversity, and the non-availability of an adequate sampling strategy. Consequently, the conclusions from microbial ecology studies have rarely been generally applicable and even the fundamental power-laws differ because the taxa-area relationship and the influence of global and distal parameters on the spatial distribution of microbial communities have not been examined. In this article we define and discuss the scientific, technical and operational limits and outcomes resulting from soil microbial biogeography together with the technical and logistical feasibility. The main results are that microbial communities are not stochastically distributed on a wide scale and that biogeographical patterns are more influenced by local parameters such as soil type and land use than by distal ones, e.g. climate and geomorphology, contrary to plants and animals. We then present the European soil biological survey network, focusing on the French national initiative and the „ECOMIC-RMQS” project. The objective of the ECOMIC-RMQS project is to characterise the density and diversity of bacterial communities in all soils in the RMQS library in order to assess, for the first time, not only microbial biogeography across the whole of France but also the impact of land use on soil biodiversity (Réseau de Mesures de la Qualité des Sols = French Soil Quality Monitoring Network, 2200 soils covering all the French territory with a systematic grid of sampling). The scientific, technical and logistical outputs are examined with a view to the future prospects needed to develop this scientific domain and its applications in sustainable land use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann R.I., Ludwig W., Scheider K.H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev. 59, 143–169.

    CAS  Google Scholar 

  • Bass Becking L.G.M. (1934) Geobiologie of inleiding tot de milieukunde, Van Stockum & Zoon, The Hague.

    Google Scholar 

  • Beijerinck M.W. (1913) De infusies en de ontdekking der backterien, in: Jaarboek van de Knoniklijke Akademie van Wetenschappen, Muller, Amsterdam.

    Google Scholar 

  • Brown J.H., Lomolino M.V. (1998) Biogeography, Sinauer, Sunderland.

    Google Scholar 

  • Cho J.C., Tiedje J. (2000) Biogeography and degree of endemicity of Fluorescent Pseudomonas strains in soil, Appl. Environ. Microbiol. 66, 5448–5456.

    Article  PubMed  CAS  Google Scholar 

  • Christen R. (2008) Global sequencing: a review of current molecular data and new methods available to assess microbial diversity, Microb. Environ. 23, 253–268.

    Article  Google Scholar 

  • Curtis T.P., Sloan W.T. (2005) Exploring microbial diversity — A vast below, Science 309, 1331–1333.

    Article  PubMed  CAS  Google Scholar 

  • de Wit R., Bouvier T. (2006) ‚Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758.

    Article  PubMed  Google Scholar 

  • Dequiedt S., Thioulouse J., Jolivet C., Saby N.P.A., Lelievre M., Maron P.A., Martin M.P., Chemidlin-Prévost-Bouré N., Toutain B., Arrouays D., Lemanceau P., Ranjard L. (2009) Biogeographical patterns of soil bacterial communities, Environ. Microbiol. Report 1, 251–255.

    Article  Google Scholar 

  • Fenchel T. (2003) Biogeography for bacteria, Science 301, 925–926.

    Article  PubMed  CAS  Google Scholar 

  • Fierer N., Jackson R.B. (2006) The diversity and biogeography of soil bacterial communities, Proc. Natl Acad. Sci. (USA) 103, 626–631.

    Article  CAS  Google Scholar 

  • Gans J., Wolinsky M., Dunbar J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil, Science 309, 1387–1390.

    Article  PubMed  CAS  Google Scholar 

  • Green J.L., Bohannan B.J.M. (2006) Spatial scaling of microbial diversity, Trends Ecol. Evol. 21, 501–507.

    Article  PubMed  Google Scholar 

  • Green J.L., Holmes A.J., Westoby M., Oliver I., Briscoe D., Dangerfield M., Gillings M., Beatlle A.J. (2004) Spatial scaling of microbial eukaryote diversity, Nature 432, 747–750.

    Article  PubMed  CAS  Google Scholar 

  • Horner-Devine M.C., Lage M., Hughes J.B., Bohannan B.J.M. (2004) A taxa-area relationship for bacteria, Nature 432, 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Isaksen M.F., Bak F., Jorgensen B.B. (1994) Thermophilic sulfate reducing bacteria in cold marine sediment, FEMS Microbiol. Ecol. 14, 1–8.

    Article  CAS  Google Scholar 

  • Johnson M.J., Lee K.Y., Scow K.M. (2003) DNA fingerprinting reveals links among agricultural crops, soil properties, and the composition of soil microbial communities, Geoderma 114, 279–303.

    Article  Google Scholar 

  • Jones R.T., Robeson M.S., Lauber C.L., Hamady M., Knight R., Fierer N. (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses, ISME J. 17, 1–12.

    Google Scholar 

  • Kibblewhite M.G., Jones R.J.A, Montanarella L., Baritz R., Huber S., Arrouays D., Micheli E., Stephens M. (2008) Environmental Assessment of Soil for Monitoring: Volume VI. Soil Monitoring System for Europe, EUR 23490 EN/6, Office for the Official Publications of the European Communities, Luxembourg, 188 p.

  • Lacarce E., Le Bas C., Cousin J.-L., Pesty B., Toutain B., Houston Durrant T., Montanarella L. (2009) Data management for monitoring forest soils in Europe for the Biosoil project, Soil Use Manage. 25, 57–65.

    Article  Google Scholar 

  • Martiny J.B.H., Bohannan B.J.M., Brown J.H., Colwell R.K., Furhman J.A., Green J.L., Horner-devine M.C., Kane M., Krumins 6J.A., Kuske C.R., Morin P.J., Naeem S., Ovreas L., Reysenbach A.L., Smith V.H., Staley J.T. (2006) Microbial biogeography: putting microorganisms on the map, Nature 4, 102–112.

    CAS  Google Scholar 

  • Morvan X.P.P., Saby N.P.A., Arrouays D., Le Bas C., Jones R.J.A., Verheijen F.G.A., Bellamy P.H., Stephens M., Kibblewhite M.G. (2008) Soil monitoring in Europe: a review of existing systems and requirements for harmonisation, Sci. Total Environ. 391, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Papke R.T., Ward D.M. (2004) The importance of physical isolation to microbial diversification, FEMS Microbiol. Ecol. 48, 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L., Dequiedt S., Lelievre M., Maron P.A., Mougel C., Morin F., Lemanceau P. (2009) Platform GenoSol: a new tool for conserving and exploring soil microbial diversity, Environ. Microbiol. Report 1, 97–99.

    Article  CAS  Google Scholar 

  • Ranjard L., Poly F., Nazaret S. (2000) Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment, Res. Microbiol. 151, 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Ranjard L., Richaume A. (2001) Quantitative and qualitative microscale distribution of bacteria in soil, Res. Microbiol. 152, 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Roesch L., Fulthorpe R.R., Riva A., Casella G., Hadwin A., Kent A. (2007) Pyrosequencing enumerates and contrast soil biodiversity, ISME J. 1, 283–290.

    PubMed  CAS  Google Scholar 

  • Saby N., Arrouays D., Jolivet C., Boulonne L., Pochot A. (2006) Geostatistical assessment of lead in soil around Paris, France, Sci. Total Environ. 367, 212–221.

    Article  CAS  Google Scholar 

  • Torsvik V., Øvreås L. (2002) Microbial diversity and function in soil: from genes to ecosystems, Curr. Opin. Microbiol. 5, 240–245.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Ranjard.

About this article

Cite this article

Ranjard, L., Dequiedt, S., Jolivet, C. et al. Biogeography of soil microbial communities: a review and a description of the ongoing french national initiative. Agronomy for Sustainable Development 30, 359–365 (2010). https://doi.org/10.1051/agro/2009033

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1051/agro/2009033

Navigation