Skip to main content

Advertisement

Log in

Inhibition of IGF-I receptor in anchorage-independence attenuates GSK-3β constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

We have previously reported that insulin-like growth factor-I (IGF-I) supports growth and survival of mouse and human medulloblastoma cell lines, and that IGF-I receptor (IGF-IR) is constitutively phosphorylated in human medulloblastoma clinical samples. Here, we demonstrate that a specific inhibitor of insulin-like growth factor-I receptor (IGF-IR), NVP-AEW541, attenuated growth and survival of mouse (BsB8) and human (D384, Daoy) medulloblastoma cell lines. Cell cycle analysis demonstrated that G1 arrest and apoptosis contributed to the action of NVP-AEW54. Interestingly, very aggressive BsB8 cells, which derive from cerebellar tumors of transgenic mice expressing viral oncoprotein (large T-antigen from human polyomavirus JC) became much more sensitive to NVP-AEW541 when exposed to anchorage-independent culture conditions. This high sensitivity to NVP-AEW54 in suspension was accompanied by the loss of GSK-3β constitutive phosphorylation and was independent from T-antigen-mediated cellular events (Supplementary Materials). BsB8 cells were partially rescued from NVP-AEW541 by GSK3β inhibitor, lithium chloride and were sensitized by GSK3β activator, sodium nitroprusside (SNP). Importantly, human medulloblastoma cells, D384, which demonstrated partial resistance to NVP-AEW541 in suspension cultures, become much more sensitive following SNP-mediated GSK3β dephosphorylation (activation). Our results indicate that hypersensitivity of medulloblastoma cells in anchorage-independence is linked to GSK-3β activity and suggest that pharmacological intervention against IGF-IR with simultaneous activation of GSK3β could be highly effective against medulloblastomas, which have intrinsic ability of disseminating the CNS via cerebrospinal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M, Merli G et al. (2001). Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19: 2189–2200.

    Article  CAS  Google Scholar 

  • Araki K, Sangai T, Miyamoto S, Maeda H, Zhang SC, Nakamura M et al. (2006). Inhibition of bone-derived insulin-like growth factors by a ligand-specific antibody suppresses the growth of human multiple myeloma in the human adult bone explanted in NOD/SCID mouse. Int J Cancer 118: 2602–2608.

    Article  CAS  Google Scholar 

  • Arevalo JC, Chao MV . (2005). Axonal growth: where neurotrophins meet Wnts. Curr Opin Cell Biol 17: 112–115.

    Article  CAS  Google Scholar 

  • Baserga R . (1994). Oncogenes and the strategy of growth factors. Cell 79: 927–930.

    Article  CAS  Google Scholar 

  • Baserga R . (1995). The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 55: 249–252.

    CAS  PubMed  Google Scholar 

  • Baserga R, Resnicoff M, Dews M . (1997). The IGF-I receptor and cancer. Endocrine 7: 99–102.

    Article  CAS  Google Scholar 

  • Beurel E, Kornprobst M, Blivet-Van Eggelpoel MJ, Ruiz-Ruiz C, Cadoret A, Capeau J et al. (2004). GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp Cell Res 300: 354–364.

    Article  CAS  Google Scholar 

  • Blackburn RV, Galoforo SS, Berns CM, Motwani NM, Corry PM, Lee YJ . (1998). Differential induction of cell death in human glioma cell lines by sodium nitroprusside. Cancer 82: 1137–1145.

    Article  CAS  Google Scholar 

  • Chao JI, Kuo PC, Hsu TS . (2004). Down-regulation of survivin in nitric oxide-induced cell growth inhibition and apoptosis of the human lung carcinoma cells. J Biol Chem 279: 20267–20276.

    Article  CAS  Google Scholar 

  • Cheng ZJ, Gronholm T, Louhelainen M, Finckenberg P, Merasto S, Tikkanen I et al. (2005). Vascular and renal effects of vasopeptidase inhibition and angiotensin-converting enzyme blockade in spontaneously diabetic Goto-Kakizaki rats. J Hypertens 23: 1757–1770.

    Article  CAS  Google Scholar 

  • Cordes N, Van Beuningen D . (2003). Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3beta (GSK-3beta) in vitro. Br J Cancer 88: 1470–1479.

    Article  CAS  Google Scholar 

  • Cui H, Meng Y, Bulleit RF . (1998). Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. Brain Res Dev Brain Res 111: 177–188.

    Article  CAS  Google Scholar 

  • D'Mello SR, Galli C, Ciotti T, Calissano P . (1993). Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90: 10989–10993.

    Article  CAS  Google Scholar 

  • Del Valle L, Enam S, Lassak A, Wang JY, Croul S, Khalili K et al. (2002a). Insulin-like growth factor i receptor activity in human medulloblastomas. Clin Cancer Res 8: 1822–1830.

    CAS  PubMed  Google Scholar 

  • Del Valle L, Wang JY, Lassak A, Peruzzi F, Croul S, Khalili K et al. (2002b). Insulin-like growth factor I receptor signaling system in JC virus T antigen-induced primitive neuroectodermal tumors-medulloblastomas. J Neurovirol 8 (Suppl 2): 138–147.

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Blivet-Van Eggelpoel MJ, Beurel E, Boissan M, Delelo R, Cadoret A et al. (2002). Dysregulation of glycogen synthase kinase-3beta signaling in hepatocellular carcinoma cells. Hepatology 36: 1528–1536.

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C et al. (2001). Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20: 252–259.

    Article  CAS  Google Scholar 

  • Diehl JA, Cheng M, Roussel MF, Sherr CJ . (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511.

    Article  CAS  Google Scholar 

  • Embi N, Rylatt DB, Cohen P . (1980). Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107: 519–527.

    Article  CAS  Google Scholar 

  • Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J et al. (2004). In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5: 231–239.

    Article  CAS  Google Scholar 

  • Glick RP, Unterman TG, Blaydes L, Hollis R . (1993). Insulin-like growth factors in central nervous system tumors. Ann NY Acad Sci 692: 223–229.

    Article  CAS  Google Scholar 

  • Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M et al. (1992). A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun 182: 593–599.

    Article  CAS  Google Scholar 

  • Hahn H, Wojnowski L, Specht K, Kappler R, Calzada-Wack J, Potter D et al. (2000). Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275: 28341–28344.

    Article  CAS  Google Scholar 

  • Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH . (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147: 58–62.

    Article  CAS  Google Scholar 

  • Ingham PW, McMahon AP . (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15: 3059–3087.

    Article  CAS  Google Scholar 

  • Jope RS . (2003). Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24: 441–443.

    Article  CAS  Google Scholar 

  • Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS . (2004). The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 560: 115–119.

    Article  CAS  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH . (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.

    Article  CAS  Google Scholar 

  • Kenney AM, Widlund HR, Rowitch DH . (2004). Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131: 217–228.

    Article  CAS  Google Scholar 

  • Kim AJ, Shi Y, Austin RC, Werstuck GH . (2005). Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118: 89–99.

    Article  CAS  Google Scholar 

  • Knoepfler PS, Kenney AM . (2006). Neural precursor cycling at sonic speed: N-Myc pedals, GSK-3 brakes. Cell Cycle 5: 47–52.

    Article  CAS  Google Scholar 

  • Krynska B, Otte J, Franks R, Khalili K, Croul S . (1999). Human ubiquitous JCV(CY) T-antigen gene induces brain tumors in experimental animals. Oncogene 18: 39–46.

    Article  CAS  Google Scholar 

  • Kumar AS, Naruszewicz I, Wang P, Leung-Hagesteijn C, Hannigan GE . (2004). ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 23: 3454–3461.

    Article  CAS  Google Scholar 

  • Kurihara M, Tokunaga Y, Ochi A, Kawaguchi T, Tsutsumi K, Shigematsu K et al. (1989). Expression of insulin-like growth factor I receptors in human brain tumors: comparison with epidermal growth factor receptor by using quantitative autoradiography. No To Shinkei 41: 719–725.

    CAS  PubMed  Google Scholar 

  • Lassak A, Del Valle L, Peruzzi F, Wang JY, Enam S, Croul S et al. (2002). Insulin receptor substrate 1 translocation to the nucleus by the human JC virus T-antigen. J Biol Chem 277: 17231–17238.

    Article  CAS  Google Scholar 

  • LeRoith D, Werner H, Faria TN, Kato H, Adamo M, Roberts Jr CT . (1993). Insulin-like growth factor receptors. Implications for nervous system function. Ann NY Acad Sci 692: 22–32.

    Article  CAS  Google Scholar 

  • Liao H, Wang JH . (2005). Biomembrane-permeable and Ribonuclease-resistant siRNA with enhanced activity. Oligonucleotides 15: 196–205.

    Article  CAS  Google Scholar 

  • Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA et al. (2004). Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci 24: 9993–10002.

    Article  CAS  Google Scholar 

  • Patti R, Reddy CD, Geoerger B, Grotzer MA, Raghunath M, Sutton LN et al. (2000). Autocrine secreted insulin-like growth factor-I stimulates MAP kinase- dependent mitogenic effects in human primitive neuroectodermal tumor/medulloblastoma. Int J Oncol 16: 577–584.

    CAS  PubMed  Google Scholar 

  • Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW . (2004). Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23: 6156–6162.

    Article  CAS  Google Scholar 

  • Reiss K . (2002). Insulin-like growth factor-I receptor – a potential therapeutic target in medulloblastomas. Expert Opin Ther Targets 6: 539–544.

    Article  CAS  Google Scholar 

  • Reiss K, D'Ambrosio C, Tu X, Tu C, Baserga R . (1998a). Inhibition of tumor growth by a dominant negative mutant of the insulin- like growth factor I receptor with a bystander effect. Clin Cancer Res 4: 2647–2655.

    CAS  PubMed  Google Scholar 

  • Reiss K, Valentinis B, Tu X, Xu SQ, Baserga R . (1998b). Molecular markers of IGF-I-mediated mitogenesis. Exp Cell Res 242: 361–372.

    Article  CAS  Google Scholar 

  • Reiss K, Yumet G, Shan S, Huang Z, Alnemri E, Srinivasula SM et al. (1999). Synthetic peptide sequence from the C-terminus of the insulin-like growth factor-I receptor that induces apoptosis and inhibition of tumor growth. J Cell Physiol 181: 124–135.

    Article  CAS  Google Scholar 

  • Resnicoff M, Tjuvajev J, Rotman HL, Abraham D, Curtis M, Aiken R et al. (1996). Regression of C6 rat brain tumors by cells expressing an antisense insulin-like growth factor I receptor RNA. J Exp Ther Oncol 1: 385–389.

    CAS  PubMed  Google Scholar 

  • Scotlandi K, Manara MC, Nicoletti G, Lollini PL, Lukas S, Benini S et al. (2005). Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.

    Article  CAS  Google Scholar 

  • Sell C, Baserga R, Rubin R . (1995). Insulin-like growth factor I (IGF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res 55: 303–306.

    CAS  PubMed  Google Scholar 

  • Sjostrom SK, Finn G, Hahn WC, Rowitch DH, Kenney AM . (2005). The Cdk1 complex plays a prime role in regulating N-myc phosphorylation and turnover in neural precursors. Dev Cell 9: 327–338.

    Article  CAS  Google Scholar 

  • Szatmari E, Habas A, Yang P, Zheng JJ, Hagg T, Hetman M . (2005). A positive feedback loop between glycogen synthase kinase 3beta and protein phosphatase 1 after stimulation of NR2B NMDA receptors in forebrain neurons. J Biol Chem 280: 37526–37535.

    Article  CAS  Google Scholar 

  • Trojanek J, Ho T, Del Valle L, Nowicki M, Wang JY, Lassak A et al. (2003). Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol 23: 7510–7524.

    Article  CAS  Google Scholar 

  • Valentinis B, Morrione A, Peruzzi F, Prisco M, Reiss K, Baserga R . (1999). Anti-apoptotic signaling of the IGF-I receptor in fibroblasts following loss of matrix adhesion. Oncogene 18: 1827–1836.

    Article  CAS  Google Scholar 

  • Valentinis B, Reiss K, Baserga R . (1998). Insulin-like growth factor-I-mediated survival from anoikis: role of cell aggregation and focal adhesion kinase. J Cell Physiol 176: 648–657.

    Article  CAS  Google Scholar 

  • Wang JY, Del Valle L, Gordon J, Rubini M, Romano G, Croul S et al. (2001). Activation of the IGF-IR system contributes to malignant growth of human and mouse medulloblastomas. Oncogene 20: 3857–3868.

    Article  CAS  Google Scholar 

  • Wang JY, Del Valle L, Peruzzi F, Trojanek J, Giordano A, Khalili K et al. (2004). Polyomaviruses and cancer – interplay between viral proteins and signal transduction pathways. J Exp Clin Cancer Res 23: 373–383.

    PubMed  Google Scholar 

  • Wang Y, Hailey J, Williams D, Wang Y, Lipari P, Malkowski M et al. (2005). Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4: 1214–1221.

    Article  CAS  Google Scholar 

  • Yau CY, Wheeler JJ, Sutton KL, Hedley DW . (2005). Inhibition of integrin-linked kinase by a selective small molecule inhibitor, QLT0254, inhibits the PI3K/PKB/mTOR, Stat3, and FKHR pathways and tumor growth, and enhances gemcitabine-induced apoptosis in human orthotopic primary pancreatic cancer xenografts. Cancer Res 65: 1497–1504.

    Article  CAS  Google Scholar 

  • Zhang YJ, Xu YF, Liu YH, Yin J, Wang JZ . (2005). Nitric oxide induces tau hyperphosphorylation via glycogen synthase kinase-3beta activation. FEBS Lett 579: 6230–6236.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr Olaf Mundigl (Roche Diagnostics, Penzberg, Germany) for providing an antibody against phosphorylated IGF-IR, and Dr Martyn White for his editorial help. This work was supported by grants from NIH: RO1CA095518-01 (KR) and PO1 NS36466-06 (KK, KR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Reiss.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbanska, K., Trojanek, J., Del Valle, L. et al. Inhibition of IGF-I receptor in anchorage-independence attenuates GSK-3β constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines. Oncogene 26, 2308–2317 (2007). https://doi.org/10.1038/sj.onc.1210018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210018

  • Springer Nature Limited

Keywords

This article is cited by

Navigation