Skip to main content
Log in

The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Bcr-Abl is a constitutively active tyrosine kinase that is expressed in Philadelphia chromosome (Ph1)-positive human leukemias. Bcr-Abl has been shown to inhibit apoptosis and cause anchorage independent growth. However, its ability to activate mitogenic signaling pathways is controversial. Here we show that Bcr-Abl signaling prevents down-regulation of cyclin-dependent kinase activity and cell cycle arrest after growth factor deprivation of hematopoietic progenitor cells. Using an inducible system to regulate Bcr-Abl expression, we also demonstrate that Bcr-Abl expression is sufficient to induce G1-to-S phase transition, DNA synthesis, and activation of cyclin-dependent kinases in cells that were arrested in G0 by growth factor deprivation. Furthermore, Bcr-Abl activates Ras, Erk, and Jnk pathways as a primary consequence of expression. These data show that Bcr-Abl is one of a select group of oncogenes that is capable of both inhibiting apoptosis and deregulating cell proliferation. The combination of these activities is likely to be important for the progression of CML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortez, D., Reuther, G. & Pendergast, A. The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 15, 2333–2342 (1997). https://doi.org/10.1038/sj.onc.1201400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1201400

  • Springer Nature Limited

Keywords

This article is cited by

Navigation