Skip to main content

Advertisement

Log in

Chronic Myeloproliferative Disorders

WT1 transcript amount discriminates secondary or reactive eosinophilia from idiopathic hypereosinophilic syndrome or chronic eosinophilic leukemia

  • Original Article
  • Published:
Leukemia Submit manuscript

Abstract

Idiopathic hypereosinophilic syndromes (HES) comprise a spectrum of indolent to aggressive diseases characterized by persistent hypereosinophilia. Hypereosinophilia can result from the presence of a defect in the hematopoietic stem cell giving rise to eosinophilia, it can be present in many myeloproliferative disorders or alternatively it may be a reactive form, secondary to many clinical conditions. The hybrid gene FIP1L1-PDGRFα was identified in a subset of patients presenting with HES or chronic eosinophilic leukemia (CEL). In spite of this, the majority of HES patients do not present detectable molecular lesions and for many of them the diagnosis is based on exclusion criteria and sometimes it remains doubt. In this study we explored the possibility to distinguish between HES/CEL and reactive hypereosinophilia based on WT1 transcript amount. For this purpose, 312 patients with hypereosinophilia were characterized at the molecular and cytogenetic level and analyzed for WT1 expression at diagnosis and during follow-up. This study clearly demonstrates that WT1 quantitative assessment allows to discriminate between HES/CEL and reactive eosinophilia and represents a useful tool for disease monitoring especially in the patients lacking a marker of clonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bain BJ . Hypereosinophilia. Curr Opin Hematol 2000; 7: 21–25.

    Article  CAS  PubMed  Google Scholar 

  2. Weller PF, Bubley GJ . The idiopathic hypereosinophilic syndrome. Blood 1994; 83: 2759–2779.

    CAS  PubMed  Google Scholar 

  3. Roufosse F, Cogan E, Goldman M . The hypereosinophilic syndrome revisited. Annu Rev Med 2003; 54: 169–184.

    Article  CAS  PubMed  Google Scholar 

  4. Vowels BR, Cassin M, Vonderheid EC, Rook AH . Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J Invest Dermatol 1992; 99: 90–94.

    Article  CAS  PubMed  Google Scholar 

  5. Simon HU, Plotz SG, Dummer R, Blaser K . Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med 1999; 341: 1112–1120.

    Article  CAS  PubMed  Google Scholar 

  6. Luppi M, Marasca R, Morselli M, Brozzi P, Torelli G . Clonal nature of hypereosinophilic syndrome. Blood 1994; 84: 349–350.

    CAS  PubMed  Google Scholar 

  7. Chang HW, Leong KH, Koh DR, Lee SH . Clonality of isolated eosinophils in the hypereosinophilic syndrome. Blood 1999; 93: 1651–1657.

    CAS  PubMed  Google Scholar 

  8. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. A tyrosine kinase created by the fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 2003; 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  9. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH . Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 2002; 359: 1577–1578.

    Article  CAS  PubMed  Google Scholar 

  10. Coutre S, Gotlib J . Targeted treatment of hypereosinophilic syndromes and chronic eosinophilic leukemias with imatinib mesylate. Semin Cancer Biol 2004; 4: 307–315.

    Article  Google Scholar 

  11. Pardanani A, Brockman SR, Paternoster SF, Flynn HC, Ketterling RP, Lasho TL et al. FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood 2004; 104: 3038–3045.

    Article  CAS  PubMed  Google Scholar 

  12. Stone RM, Gilliland DG, Klion AD . Platelet-derived growth factor receptor inhibition to treat idiopathic hypereosinophilic syndrome. Semin Oncol 2004; 31: 12–17.

    Article  CAS  PubMed  Google Scholar 

  13. Gotlib J, Cools J, Malone JM, Schrier SL, Gilliland DJ, Coutre SE . The FIP1L1-PDGFRa fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103: 2879–2888.

    Article  CAS  PubMed  Google Scholar 

  14. Bigoni R, Cuneo A, Roberti MG, Dilani R, Bardi A, Cavazzini F et al. Cytogenetic and molecular cytogenetic characterization of 6 new cases of idiopathic hypereosinophilic syndrome. Haematologica 2000; 85: 486–491.

    CAS  PubMed  Google Scholar 

  15. Hardy WR, Anderson RE . The hypereosinophilic syndromes. Ann Intern Med 1968; 68: 1220–1229.

    Article  CAS  PubMed  Google Scholar 

  16. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 1990; 60: 509–520.

    Article  CAS  PubMed  Google Scholar 

  17. Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka Y et al. Wilms' tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19: 1318–1323.

    Article  CAS  PubMed  Google Scholar 

  18. Cilloni D, Gottardi E, Messa F, Fava M, Scaravaglio P, Bertini M et al. Significant correlation between the degree of WT1 expression level and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol 2003; 21: 1988–1995.

    Article  CAS  PubMed  Google Scholar 

  19. Inoue K, Ogawa H, Sonoda Y, Kimura T, sakabe H, Oka Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukaemia. Blood 1997; 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  20. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16: 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  21. Inoue K, Ogawa H, Yamagami T, Soma T, Tani Y, Tatekawa T et al. Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood 1996; 88: 2267–2278.

    CAS  PubMed  Google Scholar 

  22. Cilloni D, Saglio G . Usefulness of quantitative assessment of Wilms tumor suppressor gene expression in chronic myeloid leukaemia patients undergoing Imatinib therapy. Semin Hematol 2003; 40: 37–41.

    Article  CAS  PubMed  Google Scholar 

  23. Tamaki H, Mishima M, Kawakami M, Tsuboi A, Kim EH, Hosen N et al. Monitoring minimal residual disease in leukemia using real-time quantitative polymerase chain reaction for Wilms tumor gene (WT1). Int J Hematol 2003; 78: 349–356.

    Article  CAS  PubMed  Google Scholar 

  24. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 2003; 101: 1698–1704.

    Article  CAS  PubMed  Google Scholar 

  25. Bain B, Pierre R, Imbert M . Chronic eosinophilic leukemia and the hypereosinophilic syndrome. In: IARC (ed) World Health Organization Classification of Tumors: tumours of the hematopoietic and lymphoid tissues. International Agency for Research in Cancer (IARC) Press: Lyon, France, 2001.

    Google Scholar 

  26. Van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  27. Cilloni D, Gottardi E, Saglio E . WT1 overexpression in acute myeloid leukemia and myelodysplastic syndromes. Myeloid Leukemia: Methods and Protocols 2005; 125: 199–211.

    Article  Google Scholar 

  28. Tefferi A, Patnaik MA, Pardanani A . Eosinophilia: secondary, clonal and idiopathic. Br J Haematol 2006; 133: 468–492.

    Article  CAS  PubMed  Google Scholar 

  29. Musto P, Falcone A, Sanpaolo G, Bodenizza C, Perla G, Minervini MM et al. Heterogeneity of response to imatinib-mesylate (glivec) in patients with hypereosinophilic syndrome: implications for dosing and pathogenesis. Leuk Lymphoma 2004; 45: 1219–1222.

    Article  CAS  PubMed  Google Scholar 

  30. Mitelman F, Panani A, Brandt L . Isochromosome 17 in a case of eosinophilic leukaemia. An abnormality common to eosinophilic and neutrophilic cells. Scand J Haematol 1975; 14: 308–312.

    Article  CAS  PubMed  Google Scholar 

  31. Needleman SW, Mane SM, Gutheil JC, Kapil V, Heyman MR, Testa JR . Hypereosinophilic syndrome with evolution to myeloproliferative disorder: temporal relationship to lossof y chromosome and c-N-ras activation. Hematol Pathol 1990; 4: 149–155.

    CAS  PubMed  Google Scholar 

  32. Sjoblom T, Boureux A, Ronnstrand L, Heldin CH, Ghysdael J, Ostman A . Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF betaR fusion protein. Oncogene 1999; 18: 7055–7062.

    Article  CAS  PubMed  Google Scholar 

  33. Haber DA, Buckler AJ . WT1: a novel tumor suppressor gene inactivated in Wilms' tumor. New Biol 1992; 4: 97–106.

    CAS  PubMed  Google Scholar 

  34. Haber DA, Housman DE . Role of the WT1 gene in Wilms' tumour. Cancer Surv 1992; 12: 105–117.

    CAS  PubMed  Google Scholar 

  35. Baird PN, Simmons PJ . Expressin of the Wilms' tumor gene (WT1) in normal hemopoiesis. Exp Hematol 1997; 25: 312–320.

    CAS  PubMed  Google Scholar 

  36. Tamaki H, Ogawa H, Ohyashiki K, Ohyashiki JH, Iwama H, Inoue H et al. The Wilms' tumor gene is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999; 13: 393–399.

    Article  CAS  PubMed  Google Scholar 

  37. Shichishima T, Okamoto M, Ikeda K, Kaneshige T, Sugiyama H, Terasawa T et al. HLA class II haplotype and quantitation of WT1 RNA in Japanese patients with paroxysmal nocturnal hemoglobinuria. Blood 2002; 100: 22–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC (Associazione Italiana per la Ricerca sul Cancro), MURST-COFIN, AIL (Associazione Italiana contro le Leucemie) and Regione Piemonte.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D Cilloni.

Appendix

Appendix

The following authors have actively participated in this study: Anna Serra, Enrico Bracco, Alessandro Morotti (Torino); Francesco Onida (Milano); Alessandro Levis, Massimo Pini (Alessandria); Tomasz Sacha (Cracow); Francesco Iuliano (Catanzaro); Marina Liberati (Perugia); Francesco Buccisano (Roma); Alberto Santagostino (Vercelli); Lucia Tornagli (Monza); Gianluca Gaidano (Novara); Gianpaolo Fra (Novara); Dario Ferrero (Torino); Massimo Negrini (Ferrara); Mariano Rocchi (Bari).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cilloni, D., Messa, F., Martinelli, G. et al. WT1 transcript amount discriminates secondary or reactive eosinophilia from idiopathic hypereosinophilic syndrome or chronic eosinophilic leukemia. Leukemia 21, 1442–1450 (2007). https://doi.org/10.1038/sj.leu.2404670

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404670

  • Springer Nature Limited

Keywords

This article is cited by

Navigation