Skip to main content

Advertisement

Log in

Animal Models

The multi-organ origin of interleukin-5 in the mouse

  • Original Manuscript
  • Published:
Leukemia Submit manuscript

Abstract

Murine Ba/F3 cells were transfected with cDNA for the α-chain of the murine interleukin-5 (IL-5) receptor and cloned lines of these cells were able to proliferate in response to as little as 2.5 pg/ml of IL-5. The bioassay was demonstrated to be specific for IL-5 and was able to measure IL-5 produced in culture by organs from adult C57BL/6 and BALB/c mice. The highest levels of IL-5 were produced by lung tissue but thymus and bladder consistently produced IL-5 and more variable production was observed by the heart, spleen, muscle, bone shaft, uterus and testes. Bone marrow cells produced no detectable IL-5. Observed levels of production of IL-5 were similar when using organs from mice lacking high-affinity receptors for IL-5 and from nu/nu, RAG-1−/− and NOD/SCID mice lacking T lymphocytes. In inflammatory peritoneal exudates induced by the injection of casein plus bacteria, levels of induced IL-5 were higher if the mice lacked high-affinity receptors for IL-5. The data indicate that T lymphocytes are not the dominant cellular source of IL-5 in organ-conditioned media and that local IL-5 production can occur with a wide range of normal murine organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. McCarthy JH, Nicola N, Szelag G, Garson OM . Studies on eosinophil colonies grown from leukaemic and non-leukaemic patients Leuk Res 1980 4: 415–426

    Article  CAS  PubMed  Google Scholar 

  2. Le Beau MM, Larson RA, Bitter MA, Vardiman JW, Golomb HM, Rowley JD . Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia New Engl J Med 1983 309: 630–633

    Article  CAS  Google Scholar 

  3. Ema H, Kitano K, Suda T, Sato Y, Muroi K, Ohta M, Yoshida M, Sakamoto S, Eguchi M, Miura Y . In vitro differentiation of leukemic cells to eosinophils in the presence of interleukin-5 in two cases of acute myeloid leukemia with the translocation (8:21)(q22;q22) Blood 1990 75: 350–356

    CAS  Google Scholar 

  4. Major RH, Leger LH . Marked eosinophilia in Hodgkin's disease JAMA 1939 112: 2601–2602

    Article  Google Scholar 

  5. Metcalf D, Burgess AW . Johnson GR, Nicola NA, Nice EC, DeLamarter J, Thatcher DR, Mermod J-J. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF J Cell Physiol 1986 128: 421–431

    Article  CAS  PubMed  Google Scholar 

  6. Metcalf D, Begley CG, Nicola NA, Johnson GR . Quantitative responsiveness of murine hemopoietic populations in vitro and in vivo to recombinant multi-CSF (IL-3) Exp Hematol 1987 15: 288–295

    CAS  PubMed  Google Scholar 

  7. Lopez AF, Begley CG, Williamson DJ, Warren DJ, Vadas MA, Sanderson CJ . Murine eosinophil differentiation factor. An eosinophil-specific colony-stimulating factor with activity for human cells J Exp Med 1986 163: 1085–1099

    Article  CAS  PubMed  Google Scholar 

  8. Metcalf D, Willson TA, Hilton DJ, Di Rago L, Mifsud S . Production of hematopoietic regulatory factors in cultures of adult and fetal mouse organs: measurement by specific bioassays Leukemia 1995 9: 1556–1564

    CAS  PubMed  Google Scholar 

  9. Lang RA, Metcalf D, Cuthbertson RA, Lyons I, Stanley E, Kelso A, Kannourakis G, Williamson DJ, Klintworth GK, Gonda TJ, Dunn AR . Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness and a fatal syndrome of tissue damage Cell 1987 51: 675–686

    Article  CAS  PubMed  Google Scholar 

  10. Dent LA, Strath M, Mellor AL, Sanderson CJ . Eosinophilia in transgenic mice expressing interleukin 5 J Exp Med 1990 172: 1425–1431

    Article  CAS  PubMed  Google Scholar 

  11. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA, Maher DW, Cebon J, Sinickas V, Dunn AR . Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology Proc Natl Acad Sci USA 1994 91: 5592–5596

    Article  CAS  PubMed  Google Scholar 

  12. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI . IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses Immunity 1996 4: 15–24

    Article  CAS  Google Scholar 

  13. Robb L, Drinkwater CC, Metcalf D, Li R, Köntgen F, Nicola NA, Begley CG . Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte–macrophage colony-stimulating factor and interleukins 3 and 5 Proc Natl Acad Sci USA 1995 92: 9565–9569

    Article  CAS  Google Scholar 

  14. Nishii K, Kita K, Nadim M, Miwa H, Ohoishi K, Yamaguchi M, Shirakawa S . Expression of interleukin-5 receptors on acute myeloid leukaemia cells: association with immunophenotype and karyotype Br J Haematol 1995 91: 169–172

    Article  CAS  Google Scholar 

  15. Schimpl A, Wecker E . Replacement of T-cell function by a T-cell product Nat New Biol 1972 237: 15–17

    Article  CAS  PubMed  Google Scholar 

  16. Metcalf D, Cutler RL, Nicola NA . Selective stimulation by mouse spleen cell conditioned medium of human eosinophil colony formation Blood 1983 61: 999–1005

    CAS  PubMed  Google Scholar 

  17. Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergsted-Lindqvist S, Takahashi M, Matsuda F, Yaoita Y, Takatsu K, Honjo T . Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II Nature 1986 324: 70–73

    Article  CAS  PubMed  Google Scholar 

  18. Garlisi CG, Falcone A, Kung TT, Stelts D, Pennline KJ, Beavis AJ, Smith SR, Egan RW, Umland SP . T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice Clin Immunol Immunopathol 1995 75: 75–83

    Article  CAS  Google Scholar 

  19. Plaut M, Pierce JH, Watson CJ, Hanley-Hyde J, Nordan RP, Paul WE . Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores Nature 1989 339: 64–67

    Article  CAS  PubMed  Google Scholar 

  20. Desreumaux P, Janin A, Colombel JF, Prin L, Plumas J, Emilie D, Torpier G, Capron A, Capron M . Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease J Exp Med 1992 175: 293–296

    Article  CAS  PubMed  Google Scholar 

  21. Warren HS, Kinnear BF, Phillips JH, Lanier LL . Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12 J Immunol 1995 154: 5144–5152

    CAS  PubMed  Google Scholar 

  22. Samoszuk M, Nansen L . Detection of interleukin-5 messenger RNA in Reed–Sternberg cells of Hodgkin's disease with eosinophilia Blood 1990 75: 13–16

    CAS  PubMed  Google Scholar 

  23. Paul CC, Keller JR, Armpriester JM, Baumann MA . Epstein–Barr virus transformed B lymphocytes produce interleukin-5 Blood 1990 75: 1400–1403

    CAS  PubMed  Google Scholar 

  24. Salvi S, Semper A, Blomberg A, Holloway J, Jaffar Z, Papi A, Teran L, Polosa R, Kelly F, Sandstrom T, Holgate S, Frew A . Interleukin-5 production by human airway epithelial cells Am J Respir Cell Mol Biol 1999 20: 984–991

    Article  CAS  PubMed  Google Scholar 

  25. Metcalf D, Willson T, Rossner M, Lock P . Receptor insertion into factor-dependent murine cell lines to develop specific bioassays for murine G-CSF and M-CSF and human GM-CSF Growth Factors 1994 11: 145–152

    Article  CAS  PubMed  Google Scholar 

  26. Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fiers W, Plaetinck G . A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF Cell 1991 66: 1175–1184

    Article  CAS  PubMed  Google Scholar 

  27. Ihle JN, Keller J, Henderson L, Klein F, Palaszynski E . Procedures for the purification of interleukin 3 to homogeneity J Immunol 1982 129: 2431–2436

    CAS  PubMed  Google Scholar 

  28. Metcalf D, Robb L, Dunn AR, Mifsud S, Di Rago L . Role of granulocyte–macrophage colony-stimulating factor and granulocyte colony-stimulating factor in the development of an acute neutrophil inflammatory response in mice Blood 1996 88: 3755–3764

    CAS  PubMed  Google Scholar 

  29. Begley CG, Lopez AF, Nicola NA, Warren DJ, Vadas MA, Sanderson CJ, Metcalf D . Purified colony stimulating factors enhance the survival of human neutrophils and eosinophils in vitro: a rapid and sensitive microassay for colony stimulating factors Blood 1986 68: 162–166

    CAS  PubMed  Google Scholar 

  30. Castro AG, Silva RA, Minoprio P, Appelberg R . In vivo evidence for a non-T cell origin of interleukin-5 Scand J Immunol 1995 41: 288–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr J-G Zhang, Bronwyn Roberts and Wendy Carter for their assistance in producing purified recombinant murine IL-5. This work was supported by the Carden Fellowship Fund of the Anti-Cancer Council of Victoria, the National Health and Medical Research Council, Canberra and the National Institutes of Health, Bethesda, Grant No. CA-22556.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, P., Willson, T., Alexander, W. et al. The multi-organ origin of interleukin-5 in the mouse. Leukemia 15, 1248–1255 (2001). https://doi.org/10.1038/sj.leu.2402173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402173

  • Springer Nature Limited

Keywords

Navigation