Skip to main content
Log in

Reply to: Rainfall an unlikely factor in Kīlauea’s 2018 rift eruption

  • Matters Arising
  • Published:

From Nature

View current issue Submit your manuscript

The Original Article was published on 02 February 2022

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Pre-eruptive rainfall data.
Fig. 2: Precursory ground deformation at Kīlauea.

Data availability

All data are open source. Satellite-derived rainfall data (TRMM and GPM satellite data) are available from the NASA (National Aeronautics and Space Administration) EarthData Goddard Earth Sciences Data and Information Services Center portal (https://doi.org/10.5067/TRMM/TMPA/3H/7). Rainfall gauge data are available from the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information climate data portal (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00511303/detail). GPS data are available from the Nevada Geodetic Laboratory (http://geodesy.unr.edu/NGLStationPages/stations/). Sentinel-1 ascending- and descending-track SAR acquisitions were obtained through UNAVCO’s Seamless SAR Archive (https://doi.org/10.5194/isprsarchives-XL-1-65-2014). Derived time series products of Kīlauea are available at https://doi.org/10.5281/zenodo.3944709 and https://doi.org/10.5281/zenodo.3957859.

Code availability

Code required for data access, analysis and display is available, in Jupyter Notebook format, at https://github.com/jifarquharson/Farquharson_Amelung_2020_Kilauea-Nature/blob/master/Farquharson_Amelung_Kilauea_Supplemental_2.ipynb (Fig. 1) and https://github.com/jifarquharson/Farquharson_Amelung_2020_Kilauea-Nature/blob/master/Farquharson_Amelung_Kilauea_Supplemental_1.ipynb (Fig. 2).

References

  1. Poland, M. P. et al. Rainfall an unlikely factor in Kīlauea’s 2018 rift eruption. Nature https://doi.org/10.1038/s41586-020-2172-5 (2022).

  2. Farquharson, J. I. & Amelung, F. Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 580, 491–495 (2020).

    Article  CAS  ADS  Google Scholar 

  3. Farquharson, J. I. & Amelung, F. Author Correction: Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 582, E3 (2020).

    Article  CAS  ADS  Google Scholar 

  4. Dzurisin, D. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii. Geophys. Res. Lett. 7, 925–928 (1980).

    Article  ADS  Google Scholar 

  5. Lipman, P. W., Lockwood, J. P., Okamura, R. T., Swanson, D. A. & Yamashita, K. M. Ground Deformation Associated with the 1975 Magnitude-7.2 Earthquake and Resulting Changes in Activity of Kilauea Volcano, Hawaii (1985).

  6. Poland, M. P., Sutton, A. J. & Gerlach, T. M. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i. Geophys. Res. Lett. 36, L16306 (2009).

  7. Orr, T. R., Thelen, W. A., Patrick, M. R., Swanson, D. A. & Wilson, D. C. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawai‘i. Geology 41, 207–210 (2013).

    Article  ADS  Google Scholar 

  8. Volcano Hazards Program FAQs (USGS, 2011); https://volcanoes.usgs.gov/vsc/file_mngr/file-153/FAQs.pdf

  9. Oosterbaan, R. J. in Vol. 16 175–224 (IILRI, 1994).

  10. Chen, Y., Ebert, E. E., Walsh, K. J. E. & Davidson, N. E. Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data. J. Geophys. Res. Atmos. 118, 2184–2196 (2013).

    Article  ADS  Google Scholar 

  11. Bagnardi, M. et al. Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009–2012. J. Geophys. Res. Solid Earth 119, 7288–7305 (2014).

    Article  ADS  Google Scholar 

  12. Patrick, M. R., Anderson, K. R., Poland, M. P., Orr, T. R. & Swanson, D. A. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard. Geology 43, 831–834 (2015).

    Article  ADS  Google Scholar 

  13. Anderson, K. R., Poland, M. P., Johnson, J. H. & Miklius, A. in Hawaiian Volcanoes 229–250 (American Geophysical Union, 2015).

  14. Parfitt, L. & Wilson, L. Fundamentals of Physical Volcanology (Wiley, 2009).

  15. Wauthier, C., Roman, D. C. & Poland, M. P. Modulation of seismic activity in Kīlauea’s upper East Rift Zone (Hawaiʻi) by summit pressurization. Geology 47, 820–824 (2019).

    Article  ADS  Google Scholar 

  16. Frazier, A. G. & Giambelluca, T. W. Spatial trend analysis of Hawaiian rainfall from 1920 to 2012. Int. J. Climatol. 37, 2522–2531 (2017).

    Article  Google Scholar 

  17. Global Volcanism Program, 2013. Volcanoes of the World Version 4.9.1 (accessed 17 September 2020); https://doi.org/10.5479/si.GVP.VOTW4-2013.

  18. Klein, F. W. Eruption forecasting at Kilauea Volcano, Hawaii. J. Geophys. Res. Solid Earth 89, 3059–3073 (1984).

    Article  Google Scholar 

  19. Díez, M., Femina, P. C. L., Connor, C. B., Strauch, W. & Tenorio, V. Evidence for static stress changes triggering the 1999 eruption of Cerro Negro Volcano, Nicaragua and regional aftershock sequences. Geophys. Res. Lett. 32, L04309 (2005).

  20. Hainzl, S., Kraft, T., Wassermann, J., Igel, H. & Schmedes, E. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 33, L19303 (2006).

  21. Hayba, D. O. & Ingebritsen, S. E. Multiphase groundwater flow near cooling plutons. J. Geophys. Res. Solid Earth 102, 12235–12252 (1997).

    Article  Google Scholar 

  22. Hsieh, P. A. & Ingebritsen, S. E. Groundwater inflow toward a preheated volcanic conduit: application to the 2018 eruption at Kīlauea Volcano, Hawai’i. J. Geophys. Res. Solid Earth 124, 1498–1506 (2019).

    Article  ADS  Google Scholar 

  23. Heap, M. J. et al. Towards more realistic values of elastic moduli for volcano modelling. J. Volcanol. Geotherm. Res. 390, 106684 (2020).

    Article  CAS  Google Scholar 

  24. Farquharson, J., Heap, M. J., Baud, P., Reuschlé, T. & Varley, N. R. Pore pressure embrittlement in a volcanic edifice. Bull. Volcanol. 78, 6 (2016).

    Article  ADS  Google Scholar 

  25. Li, D., Wang, T., Cheng, T. & Sun, X. Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring. Trans. Nonferrous Met. Soc. China 26, 1912–1918 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Copernicus Sentinel-1 and Cosmo-Skymed SAR data are available thanks to the Group on Earth Observation’s Geohazard Supersites and Natural Laboratory Initiative. This work was supported by funding from NASA’s Interdisciplinary Research in Earth Science programme (grant number 80NSSC17K0028 P00003). Data processing was conducted using Stampede2 at the Texas Advanced Computing Center of the Extreme Science and Engineering Discovery Environment, supported by National Science Foundation grant number ACI-1548562, using the public domain InSAR Scientific Computing Environment software of the Jet Propulsion Laboratory. We thank B. Varugu for discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.I.F. processed the GPS and rainfall data, and plotted all data. F.A. processed the InSAR data. Both authors contributed to the writing.

Corresponding author

Correspondence to Jamie I. Farquharson.

Ethics declarations

Competing interests

This work was supported by funding from NASA’s Interdisciplinary Research in Earth Science programme (grant number 80NSSC17K0028 P00003) exploring the influence of rainfall in triggering volcanism.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farquharson, J.I., Amelung, F. Reply to: Rainfall an unlikely factor in Kīlauea’s 2018 rift eruption. Nature 602, E11–E14 (2022). https://doi.org/10.1038/s41586-021-04164-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04164-0

  • Springer Nature Limited

Navigation