Skip to main content
Log in

One neuron versus deep learning in aftershock prediction

  • Matters Arising
  • Published:

From Nature

View current issue Submit your manuscript

Matters Arising to this article was published on 02 October 2019

The Original Article was published on 29 August 2018

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Prediction of aftershock spatial patterns based on stress features.
Fig. 2: Prediction of aftershock spatial patterns using the distance, r, and the slip, d.

Data availability

The data that support the findings of this study are available from the SRCMOD fault rupture catalogue (http://equake-rc.info/SRCMOD), the International Seismological Centre earthquake catalogue (http://www.isc.ac.uk/iscgem) and from DeVries et al.1 at https://github.com/phoebemrdevries/Learning-aftershock-location-patterns.

Code availability

Original codes by DeVries et al.1 are available at https://github.com/phoebemrdevries/Learning-aftershock-location-patterns. An R code including the distance–slip feature definition and logistic regression training/testing is available from the corresponding authors on request.

References

  1. DeVries, P. M. H., Viégas, F., Wattenberg, M. & Meade, B. J. Deep learning of aftershock patterns following large earthquakes. Nature 560, 632–634 (2018).

    Article  ADS  CAS  Google Scholar 

  2. Meade, B. J., DeVries, P. M. R., Faller, J., Viegas, F. & Wattenberg, M. What is better than Coulomb failure stress? A ranking of scalar static stress triggering mechanisms from 105 mainshock-aftershock pairs. Geophys. Res. Lett. 44, 11,409–11,416 (2017).

    Article  Google Scholar 

  3. Reasenberg, P. A. & Jones, L. M. Earthquake hazard after a mainshock in California. Science 243, 1173–1176 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Reasenberg, P. A. & Jones, L. M. Earthquake aftershocks: update. Science 265, 1251–1252 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Gerstenberger, M. C., Wiemer, S., Jones, L. M. & Reasenberg, P. A. Real-time forecast of tomorrow’s earthquakes in California. Nature 435, 328–331 (2005).

    Article  ADS  CAS  Google Scholar 

  6. Felzer, K. R. & Brodsky, E. E. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature 441, 735–738 (2006).

    Article  ADS  CAS  Google Scholar 

  7. Richards-Dinger, K., Stein, R. S. & Toda, S. Decay of aftershock density with distance does not indicate triggering by dynamic stress. Nature 467, 583–586 (2010).

    Article  ADS  CAS  Google Scholar 

  8. Mignan, A. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks. Nonlinear Process. Geophys. 25, 241–250 (2018).

    Article  ADS  Google Scholar 

  9. Steacy, S., Gerstenberger, M., Williams, C., Rhoades, D. & Christophersen, A. A new hybrid Coulomb/statistical model for forecasting aftershock rates. Geophys. J. Int. 196, 918–923 (2014).

    Article  ADS  Google Scholar 

  10. Cattania, C., Hainzl, S., Wang, L., Roth, F. & Enescu, B. Propagation of Coulomb stress uncertainties in physics-based aftershock models. J. Geophys. Res. Solid Earth 119, 7846–7864 (2014).

    Article  ADS  Google Scholar 

  11. Cattania, C. et al. The forecasting skill of physics-based seismicity models during the 2010–2012 Canterbury, New Zealand, earthquake sequence. Seismol. Res. Lett. 89, 1238–1250 (2018).

    Article  Google Scholar 

  12. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Kong, Q. et al. Machine learning in seismology: turning data into insights. Seismol. Res. Lett. 90, 3–14 (2019).

    Article  Google Scholar 

  15. Beroza, G. C. Aftershock forecasts turn to AI. Nature 560, 556–557 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M. and M.B. contributed equally to the design and analysis of this study.

Corresponding authors

Correspondence to Arnaud Mignan or Marco Broccardo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mignan, A., Broccardo, M. One neuron versus deep learning in aftershock prediction. Nature 574, E1–E3 (2019). https://doi.org/10.1038/s41586-019-1582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1582-8

  • Springer Nature Limited

This article is cited by

Navigation