Skip to main content

Advertisement

Log in

RHEUMATOID ARTHRITIS

Testing the anti-osteoclastic function of biologic DMARDs

  • News & Views
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

A variety of biologic DMARDs now exist for the treatment of rheumatoid arthritis, but we don’t really know how these drugs function in vivo. Can time-lapse intravital imaging distinguish the modes of action of DMARDs by comparing response to joint destruction in mouse models of arthritis?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Biologic DMARD mechanisms.

References

  1. Shim, J. H., Stavre, Z. & Gravallese, E. M. Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif. Tissue Int. 102, 533–546 (2018).

    Article  PubMed  CAS  Google Scholar 

  2. Burmester, G. R. et al. Managing rheumatic and musculoskeletal diseases — past, present and future. Nat. Rev. Rheumatol. 13, 443–448 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. Matsuura, Y. et al. In vivo visualisation of different modes of action of biological DMARDs inhibiting osteoclastic bone resorption. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2017-212880 (2018).

    Article  PubMed  Google Scholar 

  4. Dimitroulas, T. et al. Biologic therapies and systemic bone loss in rheumatoid arthritis. Autoimmun. Rev. 12, 958–966 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Robling, A. D. & Stout, S. D. Morphology of the drifting osteon. Cells Tissues Organs 164, 192–204 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. Kliwinski, C. et al. Prophylactic administration of abatacept prevents disease and bone destruction in a rat model of collagen-induced arthritis. J. Autoimmun. 25, 165–171 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Kikuta, J. et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J. Clin. Invest. 123, 866–873 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Axmann, R. et al. CTLA-4 directly inhibits osteoclast formation. Ann. Rheum. Dis. 67, 1603–1609 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Schett, G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther. 9, 203 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cutolo, M. et al. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res. Ther. 11, R176 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Paolino, S. Soldano, R. Brizzolara and staff members at the Research Laboratory and Division of Clinical Rheumatology of the University of Genova for their support in the compilation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Cutolo.

Ethics declarations

Competing interests

M.C. declares he has received university research funds from Actelion Pharmaceuticals Ltd, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, and Horizon Pharma. A.S. declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutolo, M., Sulli, A. Testing the anti-osteoclastic function of biologic DMARDs. Nat Rev Rheumatol 14, 446–448 (2018). https://doi.org/10.1038/s41584-018-0046-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0046-0

  • Springer Nature Limited

Navigation