Skip to main content
Log in

London dispersion forces in sterically crowded inorganic and organometallic molecules

  • Review Article
  • Published:

From Nature Reviews Chemistry

View current issue Sign up to alerts

Abstract

London dispersion forces are the weakest component of Van der Waals interactions. They arise from attractions between instantaneously induced dipoles on neighbouring atoms. Their relative weakness, in particular for light atoms, such as hydrogen, has led to their importance being largely ignored in discussions of molecular stability and reactivity. This Review highlights the influence of these attractive forces — usually between C–H moieties in ancillary ligands — on the physical and chemical properties of organometallic and inorganic molecules. We feature recent examples of organic species that have informed current thinking and follow with a discussion of several prominent inorganic and organometallic complexes wherein dispersion forces have been explicitly identified or calculated. These forces strongly influence the behaviour of such complexes and often have a defining structural role. Attention is also drawn to several compounds in which significant attractive dispersion forces are probably present but have not been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Examples of large, sterically crowded organic and inorganic substituents.
Figure 2: Timeline of the relevant advances in the study of London dispersion forces in organic and inorganic compounds.
Figure 3: London dispersion force effects in organic molecules.
Figure 4: London dispersion force effects in superilyl and related groups.
Figure 5: London dispersion force effects on molecules with multiple bonds between main group elements.
Figure 6: London dispersion force effects in transition and lanthanide metal complexes.

Similar content being viewed by others

References

  1. Tang, K.-T. & Toennies, J. P. Johannes Diderik van der Waals: a pioneer in the molecular sciences and nobel prize winner in 1910. Angew. Chem. Int. Ed. 49, 9574–9579 (2010).

    Article  CAS  Google Scholar 

  2. London, F. Zur Theorie und Systematik der Molekularkräfte. Z. Physik. 63, 245 (1930); English translation available in London, F. The general theory of molecular forces. Trans. Faraday Soc. 33, 8b–26 (1937).

    Article  Google Scholar 

  3. Parsegian, V. A. in Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  4. Eisenschitz, R. & London, F. Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften. Z. Phys. 60, 491–527 (in German) (1930).

    Article  CAS  Google Scholar 

  5. Pace, N. C., Scholtz, J. M. & Grimsley, G. R. Forces stabilizing proteins. FEBS Lett. 588, 2177–2184 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  6. Biedermann, F. & Schneider, H.-J. Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Mosher, H. S. & Tidwell, T. T. Frank C. Whitmore and steric hindrance: a duo of centennials. J. Chem. Educ. 67, 9–14 (1990).

    Article  CAS  Google Scholar 

  8. Newman, M. S. Steric Effects in Organic Chemistry (Wiley, 1956).

    Google Scholar 

  9. Power, P. P. Some highlights from the development and use of bulky monodentate ligands. J. Organomet. Chem. 689, 3904–3919 (2004).

    Article  CAS  Google Scholar 

  10. Clyburne, J. A. C. & McMullen, N. Unusual structures of main group organometallic compounds containing m-terphenyl ligands. Coord. Chem. Rev. 210, 73–99 (2000).

    Article  CAS  Google Scholar 

  11. Twamley, B., Haubrich, S. T. & Power, P. P. in Advances in Organometallic Chemistry Vol. 44 1–65 (Academic Press, 1999).

    Google Scholar 

  12. Ni, C. & Power, P. P. in Metal–Metal Bonding Vol. 136 (ed. Parkin, G. ) 59–111 (Springer, 2010).

    Book  Google Scholar 

  13. Arduengo, A. J. III Looking for stable carbenes: the difficulty in starting anew. Acc. Chem. Res. 32, 913–921 (1999).

    Article  CAS  Google Scholar 

  14. Bourissou, D., Guerret, O., Gabbai, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Valente, C. et al. Complexes for the most-challenging cross-coupling reactions. Angew. Chem. Int. Ed. 51, 3314–3332 (2012).

    Article  CAS  Google Scholar 

  16. Scott, N. M. & Nolan, S. P. Stabilization of organometallic species achieved by the use of N-heterocyclic carbene (NHC) ligands. Eur. J. Inorg. Chem. 18, 5–1828 (2005).

    Google Scholar 

  17. Asay, M., Jones, C. & Driess, M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, C. Bulky guanidinates for the stabilization of low oxidation state metallacycles. Coord. Chem. Rev. 254, 1273–1289 (2010).

    Article  CAS  Google Scholar 

  19. Edelmann, F. T. in Advances in Organometallic Chemistry Vol. 57 (eds hill, F. E. & Fink, M. J. ) 183–352 (Academic Press, 2008).

    Google Scholar 

  20. Mindiola, D. J., Holland, P. L. & Warren, T. H. in Inorganic Syntheses (ed. Rauchfuss, T. B. ) (Wiley, 2010).

    Google Scholar 

  21. Bourget-Merle, L., Lappert, M. F. & Severin, J. R. The chemistry of β-diketiminatometal complexes. Chem. Rev. 102, 3031–3066 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Fokin, A. A. et al. Stable alkanes containing very long carbon–carbon bonds. J. Am. Chem. Soc. 134, 13641–13650 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Grimme, S. & Schreiner, P. R. Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. Angew. Chem. Int. Ed. 50, 12639–12642 (2011).

    Article  CAS  Google Scholar 

  25. Echeverría, J., Aullón, G., Danovich, D., Shaik, S. & Alvarez, S. Dihydrogen contacts in alkanes are subtle but not faint. Nat. Chem. 3, 323–330 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. Pyykkö, P. Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97, 597–636 (1997).

    Article  PubMed  Google Scholar 

  27. Brandenburg, J. G., Hocheim, M., Bredow, T. & Grimme, S. Low-cost quantum chemical methods for noncovalent interactions. J. Phys. Chem. Lett. 5, 4275–4284 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Fey, N., Ridgway, B. M., Jover, J., McMullin, C. L. & Harvey, J. N. Organometallic reactivity: the role of metal–ligand bond energies from a computational perspective. Dalton Trans. 40, 11184–11191 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Alrichs, R., Penco, R. & Scoles, G. Intermolecular forces in simple systems. Chem. Phys. 19, 119–130 (1977).

    Article  Google Scholar 

  32. Becke, A. D. & Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys. 123, 154101 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. Jurecˇka, P., Cˇerny, J., Hobza, P. & Salahub, D. R. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J. Comput. Chem. 28, 555–569 (2007).

    Article  CAS  Google Scholar 

  34. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Y. & Truhlar, D. G. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett. 502, 1–13 (2011).

    Article  CAS  Google Scholar 

  36. Johnson, E. R. & Becke, A. D. Van der Waals interactions from the exchange hole dipole moment: application to bio-organic benchmark systems. J. Chem. Phys. Lett. 432, 600–603 (2006).

    Article  CAS  Google Scholar 

  37. Becke, A. D. & Johnson, E. R. A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J. Chem. Phys. 127, 124108 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Ruszinsky, A., Perdew, J. P. & Csonka, G. J. A simple but fully nonlocal correction to the random phase approximation. J. Chem. Phys. 134, 114110 (2011).

    Article  CAS  Google Scholar 

  39. Eshuis, H., Yarkony, J. & Furche, F. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. J. Chem. Phys. 132, 234114 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Furche, F. & Perdew, J. P. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J. Chem. Phys. 124, 044103 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. Jiménez-Hoyos, C. A., Janesko, B. G. & Scuseria, G. E. Evaluation of range-separated hybrid and other density functional approaches on test sets relevant for transition metal-based homogeneous catalysts. J. Phys. Chem. A. 113, 11742–11749 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. Ryde, U., Mata, R. A. & Grimme, S. Does DFT-D estimate accurate energies for the binding of ligands to metal complexes? Dalton Trans. 40, 11176–11183 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Swart, M., Solá, M. & Bickelhaupt, F. M. Inter- and intramolecular dispersion interactions. J. Comput. Chem. 32, 1117–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Yang, L., Adam, C., Nichol, G. S. & Cockroft, S. L. How much do van der Waals dispersion forces contribute to molecular recognition in solution? Nat. Chem. 5, 1006–1010 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Hansen, A. et al. The thermochemistry of london dispersion-driven transition metal reactions: getting the ‘right answer for the right reason’. ChemistryOpen 3, 177–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kronik, L. & Tkatchenko, A. Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc. Chem. Res. 47, 3208–3216 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Berland, K. et al. I. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Grimme, S. in The Chemical Bond: Chemical Bonding Across the Periodic Table (eds Frenking, G. & Shaik, S. ) 477–500 (Wiley, 2014).

    Google Scholar 

  49. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964).

    Article  CAS  Google Scholar 

  51. Gomberg, M. Triphenylmethyl, ein Fall von dreiwerthigem Kohlenstoff. Ber. Dtsch. Chem. Ges. 33, 3150–3163 (in German) (1900).

    Article  CAS  Google Scholar 

  52. Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Article  Google Scholar 

  53. Lankamp, H., Nauta, W. Th. & MacLean, C. A new interpretation of the monomer-dimer equilibrium of triphenylmethyl- and alkylsubstituted-diphenyl methyl-radicals in solution. Tetrahedron Lett. 9, 249–254 (1968).

    Article  Google Scholar 

  54. Stein, M., Winter, W. & Rieker, A. Hexakis(2,6-di-tert-butyl-4-biphenylyl)ethane — the first unbridged hexaarylethane. Angew. Chem. Int. Ed. Engl. 17, 692–694 (1978).

    Article  Google Scholar 

  55. Kahr, B., van Engen, D. & Mislow, K. Length of the ethane bond in hexaphenylethane and its derivatives. J. Am. Chem. Soc. 108, 8305–8307 (1986).

    Article  CAS  Google Scholar 

  56. Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry — reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2016).

    Article  CAS  Google Scholar 

  57. Schwertfeger, H., Fokin, A. A. & Schreiner, P. R. Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane. Angew. Chem. Int. Ed. 47, 1022–1036 (2008).

    Article  CAS  Google Scholar 

  58. Maier, G., Pfriem, S., Schäfer, R. & Mausch, R. Tetra-tert-butyltetrahedrane. Angew. Chem. Int. Ed. 17, 520–521 (1978).

    Article  Google Scholar 

  59. Balci, M., McKee, M. & Schleyer, P. v. R. Theoretical study of tetramethyl- and tetra-tert-butyl-substituted cyclobutadiene and tetrahedrane. J. Phys. Chem. 104, 1246–1255 (2000).

    Article  CAS  Google Scholar 

  60. Monteiro, N. K. V., de Oliveira, J. F. & Firme, C. L. Stability and electronic structures of substituted tetrahedranes, silicon and germanium parents — a DFT, ADMP, QTAIM and GVB study. New. J. Chem. 38, 5892–5904 (2014).

    Article  CAS  Google Scholar 

  61. Nemirowski, A., Reisenauer, H. P. & Schreiner, P. R. Tetrahedrane — dossier of an unknown. Chem. Eur. J. 12, 7411–7420 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Wiberg, N. Sterically overloaded supersilylated main group elements and main group element clusters. Coord. Chem. Rev. 163, 217–252 (1997).

    Article  CAS  Google Scholar 

  63. Schäfer, A., Weidenbruch, M., Peters, K. & von Schnering, H. Hexa-tert-butylcyclotrisilane, a strained molecule with unusually long Si–Si and Si–C bonds. Angew. Chem. Int. Ed. 23, 302–303 (1984).

    Article  Google Scholar 

  64. Wiberg, N., Schuster, A., Simon, A. & Peters, K. Hexa-tert-butyldisilane — the molecule with the longest Si–Si bond. Angew. Chem. Int. Ed. 25, 79–80 (1986).

    Article  Google Scholar 

  65. Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2008).

    Article  CAS  Google Scholar 

  66. Pauling, L. Nature of the Chemical Bond 239 (Cornell Univ. Press, 1960).

    Google Scholar 

  67. Paolini, J. P. The bond order–bond length relationship. J. Comput. Chem. 11, 1160–1163 (1990).

    Article  CAS  Google Scholar 

  68. Bock, H., Meuret, J. & Ruppert, K. Sterically overcrowded or charge perturbed molecules: XXIII. Hexakis(trimethylsilyl)disilane: structure and photoelectron spectrum of a sterically overcrowded molecule. J. Organomet. Chem. 445, 19–28 (1993).

    Article  CAS  Google Scholar 

  69. Weidenbruch, M. et al. Hexa-t-butyldigerman und Hexa-t-butylcyclotrigerman: moleküle mit den derzeit längsten Ge–Ge und Ge–C-Bindungen. J. Organomet. Chem. 341, 335–343 (in German) (1988).

    Article  CAS  Google Scholar 

  70. Puff, H. et al. Bindungsabstände zwischen organylsubstituierten Zinnatomen: III. Offenkettige Verbindungen. J. Organomet. Chem. 363, 265–280 (in German) (1989).

    Article  CAS  Google Scholar 

  71. Wiberg, N. et al. Tetrasupersilyl-tristannaallene and -tristannacyclopropene (tBu3Si)4Sn3 — isomers with the shortest S=Sn double bonds to date. Eur. J. Inorg. Chem. 1999, 1211–1218 (1999).

    Article  Google Scholar 

  72. Peng, Y. et al. Substituent effects in ditetrel alkyne analogues: multiple versus single bonded isomers. Chem. Sci. 1, 461–468 (2010).

    Article  CAS  Google Scholar 

  73. Wiberg, N., Amelunxen, K., Blank, T., Nöth, H. & Knizek, J. Tetrasupersilyldialuminum [(t-Bu)3Si]2Al–Al[Si(t-Bu)3]2: the dialane(4) with the longest Al–Al bond to date. J. Organometallics 17, 5431–5433 (1998).

    Article  CAS  Google Scholar 

  74. Uhl, W. Tetrakis[bis(trimethylsilyl)methyl]dialan(4), eine Verbindung mit Aluminium–Aluminium-Bindung. Z. Naturforsch. B 43, 1113–1118 (in German) (1988).

    Article  CAS  Google Scholar 

  75. Wehmschulte, R. J. et al. Reduction of a tetraaryldialane to generate Al–Al π-bonding. Inorg. Chem. 32, 2983–2984 (1993).

    Article  CAS  Google Scholar 

  76. Wiberg, N. et al. Ditrielanes (R3Si)2E–E(SiR3)2 and heterocubanes (R3Si)4E4Y4 (R3Si = tBu3Si, tBu2PhSi; E = Al, Ga, In, Tl; Y = O, Se). Eur. J. Inorg. Chem. 341–350 (2002).

    Article  Google Scholar 

  77. Wiberg, N. et al. Tris(tri-tert-butylsilyl)digallanyl (tBu3Si)3Ga2: a new type of compound for a heavy group 13 element. Angew. Chem. Int. Ed. 36, 1213–1215 (1997).

    Article  CAS  Google Scholar 

  78. Power, P. P. π-Bonding and the lone pair effect in multiple bonds between heavier main group elements. Chem. Rev. 99, 3463–3503 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Arp, H., Baumgartner, J., Marschner, C., Zark, P. & Müller, T. Dispersion energy enforced dimerization of a cyclic disilylated plumbylene. J. Am. Chem. Soc. 134, 6409–6415 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Weidenbruch, M., Kilian, H., Peters, K., von Schnering, H. G. & Marsmann, H. Compounds of germanium and tin, 16. A tetraaryldistannene with a long tin–tin multiple bond and differing environments at the tin atoms. Chem. Ber. 128, 983–985 (1995).

    Article  CAS  Google Scholar 

  82. Guo, J.-D., Liptrot, D. J., Nagase, S. & Power, P. P. The multiple bonding in heavier group 14 element alkene analogues is stabilized mainly by dispersion force effects. Chem. Sci. 6, 6235–6244 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee, V. Ya. et al. (tBu2MeSi)2SnSn(SiMetBu2)2: a distannene with a > Sn=Sn < double bond that is stable both in the solid state and in solution. J. Am. Chem. Soc. 128, 11643–11651 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Guo, J.-D., Nagase, S. & Power, P. P. Dispersion force effects on the dissociation of ‘Jack-in-the-box’ diphosphanes and diarsanes. Organometallics 34, 2028–2033 (2015).

    Article  CAS  Google Scholar 

  85. Hinchley, S. L. et al. Spontaneous generation of stable pnictinyl radicals from ‘Jack-in-the-box’ dipnictines: a solid-state, gas-phase, and theoretical investigation of the origins of steric Stabilization. J. Am. Chem. Soc. 123, 9045–9053 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Seidu, I., Seth, M. & Ziegler, T. Role played by isopropyl substituents in stabilizing the putative triple bond in Ar′EEAr′[E = Si, Ge, Sn; Ar′ = C6H3-2,6-(C6H3-2,6-Pri2)2] and Ar*PbPbAr* [Ar* = C6H3-2,6-(C6H2-2,4,6-Pri3)2]. Inorg. Chem. 52, 8378–8388 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Stender, M., Phillips, A. D., Wright, R. J. & Power, P. P. Synthesis and characterization of a digermanium analogue of an alkyne. Angew. Chem. Int. Ed. 41, 1785–1787 (2002).

    Article  CAS  Google Scholar 

  88. Phillips, A. D., Wright, R. J., Olmstead, M. M. & Power, P. P. Synthesis and characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-Pri2): a tin analogue of an alkyne. J. Am. Chem. Soc. 124, 5930–5931 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Pu, L., Twamley, B. & Power, P. P. Synthesis and characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): a stable heavier group 14 element analogue of an alkyne. J. Am. Chem. Soc. 122, 3524–3525 (2000).

    Article  CAS  Google Scholar 

  90. Mitoraj, M., Michalak, A. & Ziegler, T. A. Combined charge and energy decomposition scheme for bond analysis. J. Chem. Theor. Comput. 5, 962–975 (2009).

    Article  CAS  Google Scholar 

  91. Wu, L.-C., Jones, C., Stasch, A., Platts, J. A. & Overgaard, J. Non-nuclear attractor in a molecular compound under external pressure. Eur. J. Inorg. Chem. 32, 5536–5540 (2014).

    Article  CAS  Google Scholar 

  92. Wagner, J. P. & Schreiner, P. R. London dispersion decisively contributes to the thermodynamic stability of bulky NHC-coordinated main group compounds. J. Chem. Theor. Comp. 12, 231–237 (2016).

    Article  CAS  Google Scholar 

  93. Hänninen, M., Pal, K., Day, B. M., Pugh, T. & Layfield, R. A three-coordinate iron–silylene complex stabilized by ligand–ligand dispersion forces. Dalton Trans. 45, 11301–11305 (2016).

    Article  PubMed  CAS  Google Scholar 

  94. Albers, L., Rathjen, S., Baumgartner, J., Marschner, C. & Müller, T. Dispersion-energy-driven Wagner–Meerwein rearrangements in oligosilanes. J. Am. Chem. Soc. 138, 6886–6892 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Andersen, R. A. et al. The molecular structures of bis(pentamethylcyclopentadienyl)-calcium and -ytterbium in the gas phase; two bent metallocenes. J. Organomet. Chem. 312, C49–C52 (1986).

    Article  CAS  Google Scholar 

  96. Andersen, R. A., Blom, R., Boncella, J. M., Burns, C. J. & Volden, H. V. The thermal average molecular structures of bis(pentamethylcyclopentadienyl)magnesium(ii), -calcium(ii) and -ytterbium(ii) in the gas phase. Acta Chem. Scand. 41A, 24–35 (1987).

    Article  Google Scholar 

  97. Andersen, R. A., Blom, R., Burns, C. J. & Volden, H. V. Synthesis and thermal average gas phase molecular structures of bis(pentamethylcyclopentadienyl)-strontium and -barium; the first organo-strontium and -barium structures. J. Chem. Soc., Chem. Commun. 768–769 (1987).

  98. Blom, R., Faegri, K. Jr & Volden, H. V. Molecular structures of alkaline earth-metal metallocenes: electron diffraction and ab initio investigations. Organometallics 9, 372–379 (1990).

    Article  CAS  Google Scholar 

  99. Williams, R. A., Hanusa, T. P. & Huffman, J. C. Structures of ionic decamethylmetallocenes: crystallographic characterization of bis(pentamethylcyclopentadienyl)calcium and -barium and a comparison with related organolanthanide species. Organometallics 9, 1128–1134 (1990).

    Article  CAS  Google Scholar 

  100. Hollis, T. K., Burdett, J. K. & Bosnich, B. Why are bis(pentamethylcyclopentadienyl) complexes, [MCp2*], of calcium, strontium, barium, samarium, europium, and ytterbium bent? Organometallics 12, 3385–3386 (1993).

    Article  CAS  Google Scholar 

  101. Timofeeva, T. V., Lii, J.-H. & Allinger, N. L. Molecular mechanics explanation of the metallocene bent sandwich structure. J. Am. Chem. Soc. 117, 7452–7459 (1995).

    Article  CAS  Google Scholar 

  102. Rekken, B.-D. et al. Dispersion forces and counterintuitive steric effects in main group molecules: heavier group 14 (Si–Pb) dichalcogenolate carbene analogues with sub-90° interligand bond angles. J. Am. Chem. Soc. 135, 10134 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Eaborn, C. & Smith, J. D. Organometallic compounds containing tris(trimethylsilyl)methyl or related ligands. J. Chem. Soc., Dalton Trans. 1541–1552 (2001).

  104. Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Crystal structure of the tetrahydrofuran adduct of tris(trimethylsilyl)-methyl-lithium, [Li(thf)4][Li{C(SiMe3)3}2], an ate derivative of lithium. J. Chem. Soc., Chem. Commun. 827–828 (1983).

  105. Buttrus, N. H. et al. The crystal structure of [(pmdeta)Li(μ-Cl)Li(pmdeta)][Li{C(SiMe3)3}2] [pmdeta = Me2N(CH2)2NMe(CH2)2NMe2]. A novel linear chlorine-centred cation. J. Chem. Soc., Chem. Commun. 969–970 (1986).

  106. Al-Juaid, S. S. et al. Metalation of tris(trimethylsilyl)- and tris(dimethylphenylsilyl)methane with methylsodium: the first dialkylsodate. Angew. Chem. Int. Ed. 33, 1268–1270 (1994).

    Article  Google Scholar 

  107. Al-Juaid, S. S. et al. Crystal structures of organometallic compounds of lithium and magnesium containing the bulky ligands C(SiMe3)2(SiMe2X) X = Me, Ph, NMe2, or C5H4N-2. J. Organomet. Chem. 631, 76–86 (2001).

    Article  CAS  Google Scholar 

  108. Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. A novel monomeric alkyl–lithium compound. Crystal structure of [Li{C(SiMe2Ph)3}(tetrahydrofuran)]. J. Chem. Soc., Chem. Commun. 1390–1391 (1983).

  109. Eaborn, C., Hitchcock, P. B., Smith, J. D. & Sullivan, A. C. Preparation and crystal structure of the tetrahydrofuran adduct of lithium bis [tris(trimethylsilyl)methyl]cuprate, [Li(THF)4] [Cu{C(SiMe3)3}2]. The first structural characterization of a Gilman reagent. J. Organomet. Chem. 263, c23–c25 (1984).

    Article  CAS  Google Scholar 

  110. Al-Juaid, S. S., Eaborn, C., Hitchcock, P. B., McGeary, C. A. & Smith, J. D. The crystal structure of bis{tris(trimethylsilyl)methyl}magnesium: an example of two-co-ordinate magnesium in the solid state. J. Chem. Soc., Chem. Commun. 1989, 273–274 (1989).

    Article  Google Scholar 

  111. Al-Juaid, S. S. et al. Preparation, crystal structure, and reactivity of bis {tris(trimethylsilyl) methyl} magnesium. J. Organomet. Chem. 480, 199–203 (1994).

    Article  CAS  Google Scholar 

  112. Eaborn, C. & Hitchcock, P. B. The first structurally characterised solvent-free ς-bonded diorganocalcium, Ca[C(SiMe3)3]2 . Chem. Commun. 1961–1962 (1997).

  113. Westerhausen, M., Rademacher, B. & Poll, W. Trimethylsilyl-substituierte Derivate des Dimethylzinks — Synthese, spektroskopische Charakterisierung und Struktur. J. Organomet. Chem. 421, 175–188 (in German) (1991).

  114. Eaborn, C., Jones, K. L., Smith, J. D. & Tavakkoli, K. The remarkable thermal stability of benzyl[tris(dimethylphenylsily)methyl]mercury. How can a bulky ligand stabilize an organometallic compound towards unimolecular dissociation? J. Chem. Soc., Chem. Commun. 1201–1202 (1989).

  115. Al-Juaid, S. S., Eaborn, C., Lickiss, P. D., Smith, J. Davis, Tavakkoli, K. & Webb, A. D. Preparation, spectroscopic properties and thermal stabilities of organomercury compounds containing the bulky ligand (Me3Si)3C or (PhMe2Si)3C. J. Organomet. Chem. 510, 143–151 (1996).

    Article  CAS  Google Scholar 

  116. Ghotra, J. S., Hursthouse, M. B. & Welch, A. J. Three-co-ordinate scandium(iii) and europium(iii); crystal and molecular structures of their trishexamethyldisilylamides. J. Chem. Soc., Chem. Commun. 6, 9–670 (1973).

    Google Scholar 

  117. Evans, W. J., Hughes, L. A. & Hanusa, T. P. Synthesis and crystallographic characterization of an unsolvated, monomeric samarium bis(pentamethylcyclopentadienyl) organolanthanide complex, (C5Me5)2Sm. J. Am. Chem. Soc. 106, 4270–4272 (1984).

    Article  CAS  Google Scholar 

  118. Evans, W. J., Forrestal, K. J. & Ziller, J. W. Reaction chemistry of sterically crowded tris(pentamethylcyclopentadienyl)samarium. J. Am. Chem. Soc. 120, 9273–9282 (1998).

    Article  CAS  Google Scholar 

  119. Evans, W. J., Hughes, L. A. & Hanusa, T. P. Synthesis and X-ray crystal structure of bis(pentamethylcyclopentadienyl) complexes of samarium and europium: (C5Me5)2Sm and (C5Me5)2Eu. Organometallics 5, 1285–1288 (1986).

    Article  CAS  Google Scholar 

  120. Evans, W. J., Gonzales, S. L. & Ziller, J. W. Synthesis and X-ray crystal structure of the first tris(pentamethylcyclopentadienyl)metal complex: (η5-C5Me5)3Sm. J. Am. Chem. Soc. 113, 7423–7424 (1991).

    Article  CAS  Google Scholar 

  121. Ahlquist, M. S. G. & Norrby, P.-O. Dispersion and back-donation gives tetracoordinate [Pd(PPh3)4]. Angew. Chem. Int. Ed. 50, 11794–11797 (2011).

    Article  CAS  Google Scholar 

  122. Lyngvi, E., Sanhueza, I. A. & Schoenebeck, F. Dispersion makes the difference: bisligated transition states found for the oxidative addition of Pd(PtBu3)2 to Ar-OSO2R and dispersion-controlled chemoselectivity in reactions with Pd[P(iPr)(tBu2)]2 . Organometallics 34, 805–812 (2015).

    Article  CAS  Google Scholar 

  123. Maseras, F. & Eisenstein, O. Opposing steric and electronic contributions in OsCl2H2(PPr3i)2. A theoretical study of an unusual structure. New J. Chem. 22, 5–9 (1998).

    Article  CAS  Google Scholar 

  124. Minenkov, Y., Occhipinti, G., Heyndrickx, W. & Jensen, V. R. The nature of the barrier to phosphane dissociation from grubbs olefin metathesis catalysts. Eur. J. Inorg. Chem. 1507–1516 (2012).

  125. Minenkov, Y., Singstad, A., Occhipinti, G. & Jensen, V. R. The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Trans. 41, 5526–5541 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Wolters, L. P., Koekkoek, R. & Bickelhaupt, F. M. Role of steric attraction and bite-angle flexibility in metal-mediated C–H bond activation. ACS Catal. 5, 5766–5775 (2015).

    Article  CAS  Google Scholar 

  127. Wolstenholme, D. J., Dobson, J. L. & McGrady, G. S. Homopolar dihydrogen bonding in main group hydrides: discovery, consequences, and applications. Dalton Trans. 44, 9718–9731 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Ndambuki, S. & Ziegler, T. Analysis of the putative Cr–Cr quintuple bond in Ar′CrCrAr′ (Ar′ = C6H3-2,6(C6H3-2,6-Pri2)2 based on the combined natural orbitals for chemical valence and extended transition state method. Inorg. Chem. 51, 7794–7800 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(i) centers. Science 310, 844–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Power, P. P. Stable two-coordinate, open-shell (d1d9) transition metal complexes. Chem. Rev. 112, 3482–3507 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Wagner, C. L. et al. Dispersion-force-assisted disproportionation: a stable two-coordinate copper(ii) complex. Angew. Chem. Int. Ed. 55, 10444–10447 (2016).

    Article  CAS  Google Scholar 

  132. Boynton, J. N. et al. Linear and nonlinear two-coordinate vanadium complexes: synthesis, characterization, and magnetic properties of V(ii) amides. J. Am. Chem. Soc. 135, 10720–10728 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Lin, C.-Y. et al. Dispersion force stabilized two-coordinate transition metal–amido complexes of the –N(SiMe3)Dipp (Dipp = C6H3-2,6-Pri2) ligand: structural, spectroscopic, magnetic, and computational studies. Inorg. Chem. 52, 13584–13593 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Faust, M. et al. The instability of Ni{N(SiMe3)2}2: a fifty year old transition metal silylamide mystery. Angew. Chem. Int. Ed. 54, 12914–12917 (2015).

    Article  CAS  Google Scholar 

  135. Bower, B. K. & Tennent, H. G. Transition metal bicyclo[2.2.1]hept-1-yls. J. Am. Chem. Soc. 94, 2512–2518 (1972).

    Article  CAS  Google Scholar 

  136. Liptrot, D. J., Guo, J.-D., Nagase, S. & Power, P. P. Dispersion forces, disproportionation and stable high-valent late transition metal alkyls. Angew. Chem. Int. Ed. 55, 13655–13659 (2016).

    Article  CAS  Google Scholar 

  137. Lewis, R. A. et al. Reactivity and Mössbauer spectroscopic characterization of an Fe(iv) ketimide complex and reinvestigation of an Fe(iv) norbornyl complex. Inorg. Chem. 52, 8218–8227 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Byrne, E. K. & Theopold, K. H. Redox chemistry of tetrakis(1-norbornyl)cobalt. Synthesis and characterization of a cobalt(v) alkyl and self-exchange rate of a Co(iii)/Co(iv) couple. J. Am. Chem. Soc. 193, 1282–1283 (1987).

    Article  Google Scholar 

  139. Ruspic, C., Moss, J. R., Schürmann, M. & Harder, S. Remarkable stability of metallocenes with superbulky ligands: spontaneous reduction of SmIII to Smii. Angew. Chem. Int. Ed. 47, 2121–2126 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the David Parkin Visiting Professorship at the University of Bath (P.P.P.), the English-Speaking Union Lindemann Trust Fellowship (D.J.L.), the US National Science Foundation (CHE-1565501) and M. Hill for his generosity, invaluable advice and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip P. Power.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Glossary

Terphenyls

In this Review, a terphenyl ligand consists of a central aryl ring substituted by two further aryl rings at the ortho (that is, flanking) positions relative to the carbon atom (ipso) through which the terphenyl ligand is attached to the reactive centre. They are denoted by the abbreviation Ar R n , where the superscript R refers to the type of substituents on the aryl rings and the numeral indicates the number of R substituents present: for example, Ar\(^{{\rm ME}_{\rm 6} } \) = C6H3-2,6-(C6H2-2,4,6-Me3)2 and Ar\(^{i{\rm -Pr}_{\rm 4} } \) = C6H3-2,6-(C6H3-2,6-iPr6)2.

Extended transition state–natural orbitals for chemical valence

(ETS–NOCV). A scheme for the analysis of chemical bonds based on the decomposition of the bonding on the basis of charge and energy90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liptrot, D., Power, P. London dispersion forces in sterically crowded inorganic and organometallic molecules. Nat Rev Chem 1, 0004 (2017). https://doi.org/10.1038/s41570-016-0004

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-016-0004

  • Springer Nature Limited

This article is cited by

Navigation