Skip to main content
Log in

Effects of density and temperature variations on the metallicity of Mrk 71

  • Matters Arising
  • Published:

From Nature Astronomy

View current issue Submit your manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Electron temperature versus electron density for different values of the reddening constant.

Data availability

All the data discussed here were presented by ref. 1.

Code availability

Our results use the PyNeb code, publicly available on GitHub: https://github.com/Morisset/PyNeb_devel.

References

  1. Chen, Y. et al. Accurate oxygen abundance of interstellar gas in Mrk 71 from optical and infrared spectra. Nat. Astron. 7, 771–778 (2023).

    Article  ADS  Google Scholar 

  2. Peimbert, M. Temperature determinations of H ii regions. Astrophys. J. 150, 825–834 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Sutter, J. & Fadda, D. [C ii] map of the molecular ring and arms of the spiral galaxy NGC 7331. Astrophys. J. 926, 82 (2022).

    Article  ADS  Google Scholar 

  5. Fadda, D., Jacobson, J. D. & Appleton, P. N. Transient effects in Herschel/PACS spectroscopy. Astron. Astrophys. 594, A90 (2016).

    Article  ADS  Google Scholar 

  6. Luridiana, V., Morisset, C. & Shaw, R. A. PyNeb: a new tool for analyzing emission lines. I. Code description and validation of results. Astron. Astrophys. 573, A42 (2015).

    Article  ADS  Google Scholar 

  7. Gonzalez-Delgado, R. M. et al. Violent star formation in NGC 2363. Astrophys. J. 437, 239 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Esteban, C., Peimbert, M., Torres-Peimbert, S. & Rodríguez, M. Optical recombination lines of heavy elements in giant extragalactic H ii regions. Astrophys. J. 581, 241–257 (2002).

    Article  ADS  CAS  Google Scholar 

  9. Esteban, C. et al. Keck HIRES spectroscopy of extragalactic H ii regions: C and O abundances from recombination lines. Astrophys. J. 700, 654–678 (2009).

    Article  ADS  CAS  Google Scholar 

  10. Mingozzi, M. et al. CLASSY IV. Exploring UV diagnostics of the interstellar medium in local high-z analogs at the dawn of the JWST era. Astrophys. J. 939, 110 (2022).

    Article  ADS  Google Scholar 

  11. García-Rojas, J. & Esteban, C. On the abundance discrepancy problem in H ii regions. Astrophys. J. 670, 457–470 (2007).

    Article  ADS  Google Scholar 

  12. Peimbert, A., Peña-Guerrero, M. A. & Peimbert, M. A classification of H ii regions based on oxygen and helium lines: the cases of TOL 2146-391 and TOL 0357-3915. Astrophys. J. 753, 39 (2012).

    Article  ADS  Google Scholar 

  13. Rubin, R. H. The effect of density variations on elemental abundance ratios in gaseous nebulae. Astrophys. J. Suppl. Ser. 69, 897 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Méndez-Delgado, J. E., Esteban, C., García-Rojas, J., Kreckel, K. & Peimbert, M. Temperature inhomogeneities cause the abundance discrepancy in H ii regions. Nature 618, 249–251 (2023).

    Article  ADS  PubMed  Google Scholar 

  15. Méndez-Delgado, J. E. et al. Density biases and temperature relations for DESIRED H ii regions. Mon. Not. R. Astron. Soc. 523, 2952–2973 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.E.M.-D. and K.K. gratefully acknowledge funding from the German Research Foundation in the form of an Emmy Noether Research Group (grant no. KR4598/2-1, PI Kreckel). K.K. additionally gratefully acknowledges funding from the European Research Council’s starting grant (grant no. ERC StG-101077573, ISM-METALS). C.E. and J.G.-R. acknowledge support from the Spanish Research Agency of the Ministry of Science, Innovation and Universities (MCIU) under grant Espectroscopía de campo integral de regiones H ii locales. Modelos para el estudio de regiones H ii extragalácticas (grant ref. 10.13039/501100011033) and support (grant no. P/308614), which is financed by the MCIU and charged to the General State Budgets and by the General Budgets of the Autonomous Community of the Canary Islands by the MCIU. J.G.-R. acknowledges support from an advanced fellowship under the Severo Ochoa excellence programme (ref. CEX2019-000920-S) and financial support from the Canarian Agency for Research, Innovation and Information Society of the Canary Islands Government and from the European Regional Development Fund (grant ref. ProID2021010074).

Author information

Authors and Affiliations

Authors

Contributions

J.E.M.-D. led the analysis and writing of the manuscript. C.E., J.G.-R., K.K. and M.P. provided critical feedback and modified the text.

Corresponding author

Correspondence to J. Eduardo Méndez-Delgado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Delgado, J.E., Esteban, C., García-Rojas, J. et al. Effects of density and temperature variations on the metallicity of Mrk 71. Nat Astron 8, 275–277 (2024). https://doi.org/10.1038/s41550-024-02198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02198-8

  • Springer Nature Limited

This article is cited by

Navigation