Skip to main content

Advertisement

Log in

XB130, a tissue-specific adaptor protein that couples the RET/PTC oncogenic kinase to PI 3-kinase pathway

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

XB130 is a recently cloned 130 kDa-adaptor protein and Src kinase substrate, structurally similar to actin-filament-associated protein. Here we show that XB130 is predominantly expressed in the thyroid. Given that XB130 is a thyroid-specific tyrosine kinase substrate, we asked whether it is targeted by RET/PTC, a genetically rearranged, constitutively active, thyroid-specific tyrosine kinase that plays a pathogenic role in papillary thyroid cancer. RET/PTC induced robust tyrosine phosphorylation of XB130, which promoted its subsequent association with the p85α subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We identified tyrosine 54 of XB130 as the major target of RET/PTC-mediated phosphorylation and a critical binding site for the SH2 domains of p85α. Importantly, downregulation of XB130 in TPC1 papillary thyroid cancer cells, harboring the RET/PTC1 kinase, strongly reduced Akt activity without altering ERK1/2 phosphorylation, and concomitantly inhibited cell-cycle progression and survival in suspension. In conclusion, XB130 is a novel substrate of the RET/PTC kinase that links RET/PTC signaling to PI 3-kinase activation, and thereby plays an important role in sustaining proliferation and survival of thyroid tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15: 6541–6551.

    Article  CAS  Google Scholar 

  • Arighi E, Borrello MG, Sariola H . (2005). RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 16: 441–467.

    Article  CAS  Google Scholar 

  • Backer JM, Myers Jr MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M et al. (1992). Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J 11: 3469–3479.

    Article  CAS  Google Scholar 

  • Besset V, Scott RP, Ibanez CF . (2000). Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem 275: 39159–39166.

    Article  CAS  Google Scholar 

  • Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G et al. (2002). ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res 62: 7284–7290.

    CAS  PubMed  Google Scholar 

  • Carpenter CL, Auger KR, Chanudhuri M, Yoakim M, Schaffhausen B, Shoelson S et al. (1993). Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268: 9478–9483.

    CAS  PubMed  Google Scholar 

  • Castellone MD, Cirafici AM, De Vita G, De Falco V, Malorni L, Tallini G et al. (2003). Ras-mediated apoptosis of PC CL 3 rat thyroid cells induced by RET/PTC oncogenes. Oncogene 22: 246–255.

    Article  CAS  Google Scholar 

  • De Falco V, Guarino V, Malorni L, Cirafici AM, Troglio F, Erreni M et al. (2005). RAI(ShcC/N-Shc)-dependent recruitment of GAB 1 to RET oncoproteins potentiates PI 3-K signalling in thyroid tumors. Oncogene 24: 6303–6313.

    Article  CAS  Google Scholar 

  • de Martimprey H, Bertrand JR, Fusco A, Santoro M, Couvreur P, Vauthier C et al. (2008). siRNA nanoformulation against the ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Res 36: e2.

    Article  Google Scholar 

  • Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT . (1991). cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 65: 75–82.

    Article  CAS  Google Scholar 

  • Flynn DC, Leu TH, Reynolds AB, Parsons JT . (1993). Identification and sequence analysis of cDNAs encoding a 110-kilodalton actin filament-associated pp60src substrate. Mol Cell Biol 13: 7892–7900.

    Article  CAS  Google Scholar 

  • Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D et al. (2005). Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 24: 6646–6656.

    Article  CAS  Google Scholar 

  • Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I et al. (1990). PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60: 557–563.

    Article  CAS  Google Scholar 

  • Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S et al. (2004). Conversion of mechanical force into biochemical signaling. J Biol Chem 279: 54793–54801.

    Article  CAS  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW . (1994). Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371: 168–170.

    Article  CAS  Google Scholar 

  • Haslam RJ, Koide HB, Hemmings BA . (1993). Pleckstrin domain homology. Nature 363: 309–310.

    Article  CAS  Google Scholar 

  • Hayashi H, Ichihara M, Iwashita T, Murakami H, Shimono Y, Kawai K et al. (2000). Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene 19: 4469–4475.

    Article  CAS  Google Scholar 

  • Hemmings BA . (1997). PtdIns(3,4,5)P3 gets its message across. Science 277: 534.

    Article  CAS  Google Scholar 

  • Iavarone C, Acunzo M, Carlomagno F, Catania A, Melillo RM, Carlomagno SM et al. (2006). Activation of the Erk8 mitogen-activated protein (MAP) kinase by RET/PTC3, a constitutively active form of the RET proto-oncogene. J Biol Chem 281: 10567–10576.

    Article  CAS  Google Scholar 

  • Iwashita T, Asai N, Murakami H, Matsuyama M, Takahashi M . (1996). Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene 12: 481–487.

    CAS  Google Scholar 

  • Jung HS, Kim DW, Jo YS, Chung HK, Song JH, Park JS et al. (2005). Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases. Mol Endocrinol 19: 2748–2759.

    Article  CAS  Google Scholar 

  • Kaplan DR, Miller FD . (1997). Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol 9: 213–221.

    Article  CAS  Google Scholar 

  • Knauf JA, Kuroda H, Basu S, Fagin JA . (2003). RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene 22: 4406–4412.

    Article  CAS  Google Scholar 

  • Lodyga M, Bai XH, Mourgeon E, Han B, Keshavjee S, Liu M . (2002). Molecular cloning of actin filament-associated protein: a putative adaptor in stretch-induced Src activation. Am J Physiol Lung Cell Mol Physiol 283: L265–L274.

    Article  CAS  Google Scholar 

  • Maeda K, Murakami H, Yoshida R, Ichihara M, Abe A, Hirai M et al. (2004). Biochemical and biological responses induced by coupling of Gab1 to phosphatidylinositol 3-kinase in RET-expressing cells. Biochem Biophys Res Commun 323: 345–354.

    Article  CAS  Google Scholar 

  • Mai KT, Vaccani JP, Thomas J, Odell PF . (2001). Immunostaining for ret oncogene proteins in papillary thyroid carcinoma: a correlation of ret immunoreactivity and potential of lymph node metastasis. Thyroid 11: 859–863.

    Article  CAS  Google Scholar 

  • Mariggio S, Filippi BM, Iurisci C, Dragani LK, De Falco V, Santoro M et al. (2007). Cytosolic phospholipase A2 alpha regulates cell growth in RET/PTC-transformed thyroid cells. Cancer Res 67: 11769–11778.

    Article  CAS  Google Scholar 

  • Marte BM, Downward J . (1997). PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22: 355–358.

    Article  CAS  Google Scholar 

  • Melillo RM, Carlomagno F, De Vita G, Formisano P, Vecchio G, Fusco A et al. (2001). The insulin receptor substrate (IRS)-1 recruits phosphatidylinositol 3-kinase to Ret: evidence for a competition between Shc and IRS-1 for the binding to Ret. Oncogene 20: 209–218.

    Article  CAS  Google Scholar 

  • Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G et al. (2005). The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115: 1068–1081.

    Article  CAS  Google Scholar 

  • Miyagi E, Braga-Basaria M, Hardy E, Vasko V, Burman KD, Jhiang S et al. (2004). Chronic expression of RET/PTC 3 enhances basal and insulin-stimulated PI3 kinase/AKT signaling and increases IRS-2 expression in FRTL-5 thyroid cells. Mol Carcinog 41: 98–107.

    Article  CAS  Google Scholar 

  • Pelicci G, Troglio F, Bodini A, Melillo RM, Pettirossi V, Coda L et al. (2002). The neuron-specific Rai (ShcC) adaptor protein inhibits apoptosis by coupling Ret to the phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 22: 7351–7363.

    Article  CAS  Google Scholar 

  • Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I, Grieco M et al. (1992). Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 89: 1616–1620.

    Article  CAS  Google Scholar 

  • Rordorf-Nikolic T, Van Horn DJ, Chen D, White MF, Backer JM . (1995). Regulation of phosphatidylinositol 3′-kinase by tyrosyl phosphoproteins. Full activation requires occupancy of both SH2 domains in the 85-kDa regulatory subunit. J Biol Chem 270: 3662–3666.

    Article  CAS  Google Scholar 

  • Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G et al. (1996). Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene 12: 1821–1826.

    CAS  Google Scholar 

  • Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M et al. (1994a). Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 9: 509–516.

    CAS  Google Scholar 

  • Santoro M, Melillo RM, Grieco M, Berlingieri MT, Vecchio G, Fusco A . (1993). The TRK and RET tyrosine kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth Differ 4: 77–84.

    CAS  PubMed  Google Scholar 

  • Santoro M, Wong WT, Aroca P, Santos E, Matoskova B, Grieco M et al. (1994b). An epidermal growth factor receptor/ret chimera generates mitogenic and transforming signals: evidence for a ret-specific signaling pathway. Mol Cell Biol 14: 663–675.

    Article  CAS  Google Scholar 

  • Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H . (1988). Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3: 571–578.

    CAS  PubMed  Google Scholar 

  • Xu J, Bai XH, Lodyga M, Han B, Xiao H, Keshavjee S et al. (2007). XB130, a novel adaptor protein for signal transduction. J Biol Chem 282: 16401–16412.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr B Han and Dr D Winer for technical assistance. We thank AJ Ryan, AstraZeneca for the ZD6474 inhibitor. We also thank Dr S Asa and JM Hershman for human thyroid cell lines, Dr G Pelicci for GST-fusion proteins and Dr M Chiariello for the Src mutant. This work was supported by operating grants (MOP-13270, MOP-42546) from Canadian Institutes of Health Research, a grant from the Italian Association for Cancer Research, MIUR, Alleanza contro iL Cancro and the European Union Contract FP6-36495 (GENRISK-T).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Santoro or M Liu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodyga, M., De Falco, V., Bai, Xh. et al. XB130, a tissue-specific adaptor protein that couples the RET/PTC oncogenic kinase to PI 3-kinase pathway. Oncogene 28, 937–949 (2009). https://doi.org/10.1038/onc.2008.447

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.447

  • Springer Nature Limited

Keywords

This article is cited by

Navigation