Skip to main content
Log in

The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins

  • Article
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

A Corrigendum to this article was published on 01 October 1995

Abstract

The S100 calcium-binding proteins are implicated as effectors in calcium-mediated signal transduction pathways. The three-dimensional structure of the S100 protein calcyclin has been determined in solution in the apo state by NMR spectroscopy and a computational strategy that incorporates a systematic docking protocol. This structure reveals a symmetric homodimeric fold that is unique among calcium-binding proteins. Dimerization is mediated by hydrophobic contacts from several highly conserved residues, which suggests that the dimer fold identified for calcyclin will serve as a structural paradigm for the S100 subfamily of calcium-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donato, R. Perspectives in S-100 protein biology. Cell Calc. 12, 713–726 (1991).

    Article  CAS  Google Scholar 

  2. Hilt, D.C. & Kligman, D. in The S-100 protein family: a biochemical and functional overview. Novel calcium-binding proteins, (ed. C.W. Heizmann) 65–103 (Springer-Verlag, New York, 1991).

    Chapter  Google Scholar 

  3. Engelkamp, D., Schafer, B.W., Mattei, M.G., Erne, P. & Heizmann, C.W. Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding protein S100D and S100E. Proc. natn. Acad. Sci. U.S.A. 90, 6547–6551 (1993).

    Article  CAS  Google Scholar 

  4. Schafer, B.W., Wicki, R., Engelkamp, D., Mattei, M.G. & Heizmann, C.W. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics 25, 638–643 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Calabretta, B. et al. Cell-cycle-specific genes differentially expressed in human leukemias. Proc. natn. Acad. Sci. U.S.A. 82, 4463–4467 (1985).

    Article  CAS  Google Scholar 

  6. Calabretta, B. et al. Altered expression of G1 specific genes in human myeloid cells. Proc. natn. Acad. Sci. U.S.A. 83, 1495–1498 (1986).

    Article  CAS  Google Scholar 

  7. Murphy, L.C., Murphy, L.J., Tsuyuki, D., Duckworth, M.L. & Shiu, R.P.C. Cloning and characterization of a cDNA encoding a highly conserved, putative calcium binding protein, identified by an anti-prolactin receptor antiserum. J. biol. Chem. 263, 2397–2401 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Hirschhorn, R.R., Aller, P., Yuan, Z., Gibson, C.W. & Baserga, R. Cell-cycle-specific cDNAs from mammalian cells temperature sensitive for growth. Proc. natn. Acad. Sci. U.S.A. 81, 6004–6008 (1984).

    Article  CAS  Google Scholar 

  9. Ferrari, S. et al. Structural and functional analysis of a growth-regulated gene, the human calcyclin. J. biol. Chem. 262, 8325–8332 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Tokumitsu, H., Mizutani, A., Minami, H., Kobayashi, R. & Hidaka, H. A calcyclin-associated protein is a newly identified member of the Ca2+/phospholipid-binding proteins, annexin family. J. biol. Chem. 267, 8919–8924 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Minami, H. et al. Specific binding of CAP-50 to calcyclin. FEBS Lett. 305, 217–219 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Tokumitsu, H., Mizutani, A. & Hidaka, H. Calcyclin-binding site located on the NH2-terminal domain of rabbit CAP-50 (annexin XI): functional expression of CAP-50 in Escherichia coli. Arch. biochem. Biophys. 303, 302–306 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Mizutani, A. et al., CAP-50, a newly identified annexin, localizes in nuclei of cultured fibroblast 3Y1 cells. J. biol. Chem. 267, 13498–13504 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Baudier, J. & Cole, R.D. Interactions between the microtubule-associated τ proteins and S100b regulate τ phosphorylation by the Ca2+/ calmodulin-dependent protein kinase II. J. biol. Chem. 263, 5876–5883 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Gerke, V. & Weber, K. The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific proteins is related in sequence to the S-100 protein of glial cells. EMBO J. 4, 2917–2920 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Glenney Jr., J.R. & Tack, B.F. Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc. natn. Acad. Sci. U.S.A. 82, 7884–7888 (1985).

    Article  CAS  Google Scholar 

  17. McPhalen, C.A., Strynadka, N.C. & James, M.N. Calcium-binding sites in proteins: a structural perspective. Adv. Prot. Chem. 42, 77–144 (1991).

    CAS  Google Scholar 

  18. Szebenyi, D.M.E. & Moffat, K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. Molecular details, ion binding, and implications for the structure of other calcium-binding proteins. J. biol. Chem. 261, 8761–8777 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Svensson, L.A., Thulin, E. & Forsén, S., Proline cis-transisomers in calbindin D9k observed by X-ray crystallography. J. molec. Biol. 223, 601–606 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Kördel, J., Skelton, N.J., Akke, M. & Chazin, W.J. High-resolution solution structure of calcium-loaded calbindin D9k . J. molec. Biol. 231, 711–734 (1993).

    Article  PubMed  Google Scholar 

  21. Skelton, N.J., Kördel, J., & Chazin, W.J. Determination of the solution structure of apo calbindin D9k by NMR spectroscopy. J. molec. Biol. 249, 441–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Wüthrich, K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45–50 (1989).

    Article  PubMed  Google Scholar 

  23. Barger, S.W., Wolchok, S.R. & Van Eldik, L.J. Disulfide-linked S100β dimers and signal transduction. Biochim. biophys. Acta 1160, 105–112 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Teigelkamp, S. et al., Calcium-dependent complex assembly of the myeloic differentiation proteins MRP-8 and MRP-14. J. biol. Chem. 266, 13462–13467 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Gerke, V. & Weber, K. Calcium-dependent conformational changes in the 36-kDa subunit of intestinal protein I related to the cellular 36-kDa target of Rous sarcoma virus tyrosine kinase. J. biol. Chem. 260, 1688–1695 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Dell'Angelica, E.C., Schleicher, C.H. & Santome, J.A. Primary structure and binding properties of calgranulin C, a novel S100-like calcium-binding protein from pig granulocytes. J. biol. Chem. 269, 28929–28936 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Pedrocchi, M., Schafer, B.W., Durussel, I., Cox, J.A. & Heizmann, C.W. Purification and characterization of the recombinant human calcium-binding S100 proteins CAPL and CACY. Biochemistry 33, 6732–6738 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Skelton, N.J., Kordel, J., Forsen, S. & Chazin, W.J. Comparative structural analysis of the calcium free and bound states of the calcium regulatory protein calbindin D9k . J. molec. Biol. 213, 539–598 (1990).

    Article  Google Scholar 

  29. Kilby, P.M., Van Eldik, L.J. & Roberts, G.C.K. Nuclear magnetic resonance assignments and secondary structure of bovine S100β protein. FEBS Lett. 363, 90–96 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. A. Rev. Biophys. biomol. Struct. 24, 85–116 (1995).

    Article  CAS  Google Scholar 

  31. Wojda, U. & Kuznicki, J. Calcyclin from mouse Ehrlich ascites tumor cells and rabbit lung form non-covalent dimers. Biochim. biophys. Acta 1209, 248–252 (1994).

    Article  PubMed  Google Scholar 

  32. Kuznicki, J., Filipek, A., Hunziker, P., Huber, S. & Heizmann, C.W. Calcium-binding protein from mouse Ehrlich ascites-tumour cells is homologous to human calcyclin. Biochem. J. 263, 951–956 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ando, Y., Watanabe, M., Akatsuka, H., Tokumitsu, H. & Hidaka, H. Site-directed mutation makes rabbit calcyclin dimer. FEBS Lett. 314, 109–113 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Johnsson, N. & Weber, K. Alkylation of cysteine 82 of p11 abolishes the complex formation with the tyrosine-protein kinase substrate p36 (annexin 2, calpactin 1, lipocortin 2). J. biol. Chem. 265, 14464–14468 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Kube, E., Becker, T., Weber, K. & Gerke, V. Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin ll-binding site on p11, a member of the S100 protein family. J. biol. Chem. 267, 14175–14182 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Tokumitsu, H., Kobayashi, R. & Hidaka, H. A calcium-binding protein from rabbit lung cytosol identified as the product of a growth-regulated gene (2A9) and its binding proteins. Arch. biochem. Biophys. 288, 202–207 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Ludvigsen, S. & Poulsen, F.M. Positive φ-angles in proteins by nuclear magnetic resonance spectroscopy. J. biomol. NMR 2, 227–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Pearlman, D.A., Case, D.A., Yip, P. SANDER/AMBER 4.0. San Francisco, University of California, 1991.

  39. Weiner, S.J., Kollman, P.A., Nguyen, D.T., & Case, D.A. An all-atom force field for simulations of proteins and nucleic acids. J. comput. Chem. 7, 230–252 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Chothia, C., Levitt, M. & Richardson, D. Helix to helix packing in proteins. J. molec. Biol. 145, 215–250 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Duncan, B., Macke, T. & Olson, A. Biomolecular visualization using AVS. J. molec. Graphics, in the press.

  43. Duncan, B., Pique, M. & Olson, A. AVS for molecular modeling. Proc. AVS Conf. (1993).

  44. Strynadka, N.C.J. & James, M.N.G. Crystal structures of the helix-loop-helix calcium-binding proteins. A. Rev. Biochem. 58, 951–998 (1989).

    Article  CAS  Google Scholar 

  45. Kawasaki, H. & Kretsinger, R.H. Calcium-binding proteins 1: EF-hands. Protein Profile 1, 343–517 (1994).

    CAS  PubMed  Google Scholar 

  46. Carsen, M. Ribbons 2.0. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  47. Sanner, M.F., Olson, A.J. & Spehner, J.C. Fast and robust computation of molecular surfaces. Proc. 11th ACM Symp. comp. Geom. C6–C7 (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potts, B., Smith, J., Akke, M. et al. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nat Struct Mol Biol 2, 790–796 (1995). https://doi.org/10.1038/nsb0995-790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-790

  • Springer Nature America, Inc.

This article is cited by

Navigation