Skip to main content

Advertisement

Log in

Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

This protocol describes a growth medium–based approach for obtaining cochlear endothelial cells (ECs), pericytes (PCs) and perivascular resident macrophage-like melanocytes (PVM/Ms) from the stria vascularis of mice aged between P10 and P15 (P, postnatal day). The procedure does not involve mechanical or enzymatic digestion of the sample tissue. Explants of stria vascularis, 'mini-chips', are selectively cultured in growth medium, and primary cell lines are obtained in 7–10 d. The method is simple and reliable, and it provides high-quality ECs, PVM/Ms and PCs with a purity >90% after two passages. This protocol is suitable for producing primary culture cells from organs and tissues of small volume and high anatomical complexity, such as the inner ear capillaries. The highly purified primary cell lines enable cell culture–based in vitro modeling of cell-cell interactions, barrier control function and drug action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Outline of the steps in the explant procedure.
Figure 2: Outline of the selective culturing procedure.
Figure 3: Validating the phenotype of PCs, PVM/Ms and ECs.
Figure 4: Morphological validation of cell lines.
Figure 5: FACS was used to assess cell purity and validate phenotype.
Figure 6: The schematic illustrates several variations of the in vitro blood-labyrinth barrier model.

Similar content being viewed by others

References

  1. Cohen-Salmon, M. et al. Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc. Natl. Acad. Sci. USA 104, 6229–6234 (2007).

    Article  CAS  Google Scholar 

  2. Juhn, S.K., Hunter, B.A. & Odland, R.M. Blood-labyrinth barrier and fluid dynamics of the inner ear. Int. Tinnitus J. 7, 72–83 (2001).

    CAS  PubMed  Google Scholar 

  3. Juhn, S.K. & Rybak, L.P. Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol. 91, 529–534 (1981).

    Article  CAS  Google Scholar 

  4. Juhn, S.K., Rybak, L.P. & Fowlks, W.L. Transport characteristics of the blood–perilymph barrier. Am. J. Otolaryngol. 3, 392–396 (1982).

    Article  CAS  Google Scholar 

  5. Zhang, W. et al. Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc. Natl. Acad. Sci. USA 109, 10388–10393 (2012).

    Article  CAS  Google Scholar 

  6. Cucullo, L. et al. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res. 951, 243–254 (2002).

    Article  CAS  Google Scholar 

  7. Duport, S. et al. An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc. Natl. Acad. Sci. USA 95, 1840–1845 (1998).

    Article  CAS  Google Scholar 

  8. Lai, C.H. & Kuo, K.H. The critical component to establish in vitro BBB model: pericyte. Brain Res. Brain Res. Rev. 50, 258–265 (2005).

    Article  CAS  Google Scholar 

  9. Folkman, J., Haudenschild, C.C. & Zetter, B.R. Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. USA 76, 5217–5221 (1979).

    Article  CAS  Google Scholar 

  10. Baudin, B., Bruneel, A., Bosselut, N. & Vaubourdolle, M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat. Protoc. 2, 481–485 (2007).

    Article  CAS  Google Scholar 

  11. Jaffe, E.A., Nachman, R.L., Becker, C.G. & Minick, C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756 (1973).

    Article  CAS  Google Scholar 

  12. Sobczak, M., Dargatz, J. & Chrzanowska-Wodnicka, M. Isolation and culture of pulmonary endothelial cells from neonatal mice. J. Vis. Exp. 46, 2316 (2010).

    Google Scholar 

  13. Bernas, M.J. et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat. Protoc. 5, 1265–1272 (2010).

    Article  CAS  Google Scholar 

  14. Maier, C.L., Shepherd, B.R., Yi, T. & Pober, J.S. Explant outgrowth, propagation and characterization of human pericytes. Microcirculation 17, 367–380 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mogensen, C. et al. Isolation and functional characterization of pericytes derived from hamster skeletal muscle. Acta Physiol. 201, 413–426 (2011).

    Article  CAS  Google Scholar 

  16. Weber, S.C. et al. Isolation and culture of fibroblasts, vascular smooth muscle, and endothelial cells from the fetal rat ductus arteriosus. Pediatr. Res. 70, 236–241 (2011).

    Article  Google Scholar 

  17. Bobilya, D.J. A model for transport studies of the blood-brain barrier. Methods Mol. Biol. 637, 149–163 (2010).

    Article  CAS  Google Scholar 

  18. Bryan, B.A. & D′Amore, P.A. Pericyte isolation and use in endothelial/pericyte coculture models. Methods Enzymol. 443, 315–331 (2008).

    Article  CAS  Google Scholar 

  19. Rops, A.L. et al. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines. Kidney Int. 66, 2193–2201 (2004).

    Article  CAS  Google Scholar 

  20. Ribatti, D., Nico, B., Vacca, A., Roncali, L. & Dammacco, F. Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem Cell Res. 11, 81–90 (2002).

    Article  Google Scholar 

  21. Seaman, S. et al. Genes that distinguish physiological and pathological angiogenesis. Cancer cell 11, 539–554 (2007).

    Article  CAS  Google Scholar 

  22. Neng, L., Zhang, F., Kachelmeier, A. & Shi, X. Endothelial cell, pericyte, and perivascular resident macrophage-type melanocyte interactions regulate cochlear intrastrial fluid-blood barrier permeability. J. Assoc. Res. Otolaryngol. http://dx.doi.org/10.1007/s10162-012-0365-9 (2012).

  23. Iwagaki, T., Suzuki, T. & Nakashima, T. Development and regression of cochlear blood vessels in fetal and newborn mice. Hear. Res. 145, 75–81 (2000).

    Article  CAS  Google Scholar 

  24. Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 342, 21–30 (2010).

    Article  Google Scholar 

  25. Tigges, U., Welser-Alves, J.V., Boroujerdi, A. & Milner, R. A novel and simple method for culturing pericytes from mouse brain. Microvasc. Res. 84, 74–80 (2012).

    Article  CAS  Google Scholar 

  26. Wisniewska-Kruk, J. et al. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Exp. Eye Res. 96, 181–190 (2012).

    Article  CAS  Google Scholar 

  27. Yamagishi, S. et al. Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties. Biochem. Biophys. Res. Commun. 296, 877–882 (2002).

    Article  CAS  Google Scholar 

  28. Dawson, D.W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).

    Article  CAS  Google Scholar 

  29. Shepro, D. & Morel, N.M. Pericyte physiology. FASEB J. 7, 1031–1038 (1993).

    Article  CAS  Google Scholar 

  30. Vandenhaute, E. et al. Brain pericytes from stress-susceptible pigs increase blood-brain barrier permeability. Fluids Barriers CNS 9, 11 (2012).

    Article  Google Scholar 

  31. Bouchard, B.A., Shatos, M.A. & Tracy, P.B. Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation. Arterioscler. Thromb. Vasc. Biol. 17, 1–9 (1997).

    Article  CAS  Google Scholar 

  32. Provance, D.W. Jr., Wei, M., Ipe, V. & Mercer, J.A. Cultured melanocytes from dilute mutant mice exhibit dendritic morphology and altered melanosome distribution. Proc. Natl. Acad. Sci. USA 93, 14554–14558 (1996).

    Article  CAS  Google Scholar 

  33. Gerrity, R.G., Richardson, M., Somer, J.B., Bell, F.P. & Schwartz, C.J. Endothelial cell morphology in areas of in vivo Evans blue uptake in the aorta of young pigs. II. Ultrastructure of the intima in areas of differing permeability to proteins. Am. J. Pathol. 89, 313–334 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) National Institute on Deafness and Other Communication Disorders (NIDCD) grant no. DC008888-02A1 (X.S.), NIH NIDCD grant no. DC008888-02S1 (X.S.), NIH NIDCD grant no. R01-DC010844 (X.S.), NIH NIDCD grant no. R21-DC12398-01 (X.S.), NIH grant no. P30-DC005983 and NIH National Institute of General Medical Services (NIGMS) grant no. P01-051487-15 (M.A.).

Author information

Authors and Affiliations

Authors

Contributions

W.Z. and L.N. created the initial protocol. L.N. refined the protocol. A.H. and M.Z. performed the SEM imaging. A.K. supervised the flow cytometry. X.S., A.F. and M.A. supervised the project. X.S. wrote the manuscript. All the authors discussed the results, procedures and commented on the manuscript at different stages.

Corresponding author

Correspondence to Xiaorui Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neng, L., Zhang, W., Hassan, A. et al. Isolation and culture of endothelial cells, pericytes and perivascular resident macrophage-like melanocytes from the young mouse ear. Nat Protoc 8, 709–720 (2013). https://doi.org/10.1038/nprot.2013.033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.033

  • Springer Nature Limited

This article is cited by

Navigation