Skip to main content
Log in

Super-elastic collision of large-scale magnetized plasmoids in the heliosphere

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

A super-elastic collision is an unusual process in which some mechanism causes the kinetic energy of the system to increase. Most studies have focused on solid-like objects, and have rarely considered gases or liquids, as the collision of these is primarily a mixing process. However, magnetized plasmoids are different from ordinary gases—as cross-field diffusion is effectively prohibited—but it remains unclear how they behave during a collision. Here we present a comprehensive picture of a unique collision between two coronal mass ejections in the heliosphere, which are the largest magnetized plasmoids erupting from the Sun. Our analysis reveals that these two magnetized plasmoids collided as if they were solid-like objects, with a likelihood of 73% that the collision was super-elastic. The total kinetic energy of the plasmoid system increased by about 6.6% through the collision, significantly influencing its dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Configuration of the two CMEs, spacecraft and planets.
Figure 2: The STEREO/SECCHI images of the two CMEs and their collision in the heliosphere.
Figure 3: The time-elongation map from 2 to 9 November 2008 constructed on the basis of the running-difference images from STEREO-B.
Figure 4: The heliocentric distance d and the radius r, in units of solar radius, of the two CMEs as functions of time for the case that θ and ϕ of CME1 are 6° and 28°, respectively, and those of CME2 are 16° and 8°, respectively.
Figure 5: Likelihood of super-elastic collision calculated by varying the CMEs’ longitudes and speeds within their uncertainties.

Similar content being viewed by others

References

  1. Bridges, F. G., Hatzes, A. & Lin, D. N. C. Structure, stability and evolution of Saturn’s rings. Nature 309, 333–335 (1984).

    Article  ADS  Google Scholar 

  2. Louge, M. Y. & Adams, M. E. Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65, 021303 (2002).

    Article  ADS  Google Scholar 

  3. Kuninaka, H. & Hayakawa, H. Simulation of cohesive head-on collisions of thermally activated nanoclusters. Phys. Rev. E 79, 031309 (2009).

    Article  ADS  Google Scholar 

  4. Saitoh, K., Bodrova, A., Hayakawa, H. & Brilliantov, N. V. Negative normal restitution coefficient found in simulation of nanocluster collisions. Phys. Rev. Lett. 105, 238001 (2010).

    Article  ADS  Google Scholar 

  5. Kuninaka, H. & Hayakawa, H. Anomalous behavior of the coefficient of normal restitution in oblique impact. Phys. Rev. Lett. 93, 154301 (2004).

    Article  ADS  Google Scholar 

  6. Smith, C. E. & Liu, P-P. Coefficients of restitution. J. Appl. Mech. 59, 963–969 (1992).

    Article  ADS  Google Scholar 

  7. Calsamiglia, J., Kennedy, S. W., Chatterjee, A., Ruina, A. & Jenkins, J. T. Anomalous frictional behavior in collisions of thin disks. J. Appl. Mech. 66, 146–152 (1999).

    Article  ADS  Google Scholar 

  8. Lepping, R. P., Jones, J. A. & Burlaga, L. F. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957–11965 (1990).

    Article  ADS  Google Scholar 

  9. Yashiro, S. et al. A catalog of white light coronal mass ejections observed by the soho spacecraft. J. Geophys. Res. 109, A07105 (2004).

    Article  ADS  Google Scholar 

  10. Burlaga, L. F., Plunkett, S. P. & St Cyr, O. C. Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266 (2002).

    Article  Google Scholar 

  11. Wang, Y. M., Wang, S. & Ye, P. Z. Multiple magnetic clouds in interplanetary space. Sol. Phys. 211, 333–344 (2002).

    Article  ADS  Google Scholar 

  12. Wang, Y. M., Ye, P. Z. & Wang, S. Multiple magnetic clouds: Several examples during March–April, 2001. J. Geophys. Res. 108, 1370 (2003).

    Article  Google Scholar 

  13. Wang, Y. M., Ye, P. Z., Wang, S. & Xue, X. H. An interplanetary cause of large geomagnetic storms: Fast forward shock overtaking preceding magnetic cloud. Geophys. Res. Lett. 30, 1700 (2003).

    ADS  Google Scholar 

  14. Farrugia, C. & Berdichevsky, D. Evolutionary signatures in complex ejecta and their driven shocks. Ann. Geophys. 22, 3679–3698 (2004).

    Article  ADS  Google Scholar 

  15. Wang, Y. et al. Impact of the major coronal mass ejections on geo-space during September 7–13, 2005. Astrophys. J. 646, 625–633 (2006).

    Article  ADS  Google Scholar 

  16. Harrison, R. A. et al. Two years of the STEREO heliospheric imagers. Invited review. Sol. Phys. 256, 219–237 (2009).

    Article  ADS  Google Scholar 

  17. Liu, Y. et al. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. 710, L82–L87 (2010).

    Article  ADS  Google Scholar 

  18. Liu, Y., Luhmann, J. G., Bale, S. D. & Lin, R. P. Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: A comprehensive view. Astrophys. J. 734, 84 (2011).

    Article  ADS  Google Scholar 

  19. Gopalswamy, N., Yashiro, S., Kaiser, M. L., Howard, R. A. & Bougeret, J. L. Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. 548, L91–L94 (2001).

    Article  ADS  Google Scholar 

  20. Shen, C., Wang, Y., Ye, P. & Wang, S. Enhancement of solar energetic particles during a shock-magnetic cloud interacting complex structure. Sol. Phys. 252, 409–418 (2008).

    Article  ADS  Google Scholar 

  21. Lugaz, N., Vourlidas, A. & Roussev, I. I. Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere application to CME–CME interaction. Ann. Geophys. 27, 3479–3488 (2009).

    Article  ADS  Google Scholar 

  22. Liu, Y. D. et al. Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. 746, L15 (2012).

    Article  ADS  Google Scholar 

  23. Martı´nez Oliveros, J. C. et al. The 2010 August 01 type II burst: A CME– CME interaction, and its radio and white-light manifestations. Astrophys. J. 748, 66 (2012).

    Article  ADS  Google Scholar 

  24. Temmer, M. et al. Characteristics of kinematics of a coronal mass ejection during the 2010 August 1 CME–CME interaction event. Astrophys. J. 749, 57 (2012).

    Article  ADS  Google Scholar 

  25. Gonzalez-Esparza, A., Santillán, A. & Ferrer, J. A numerical study of the interaction between two ejecta in the interplanetary medium: one- and two-dimensional hydrodynamic simulations. Ann. Geophys. 22, 3741–3749 (2004).

    Article  ADS  Google Scholar 

  26. Schmidt, J. & Cargill, P. A numerical study of two interacting coronal mass ejections. Ann. Geophys. 22, 2245–2254 (2004).

    Article  ADS  Google Scholar 

  27. Wang, Y., Zheng, H., Wang, S. & Ye, P. MHD simulation of the formation and propagation of multiple magnetic clouds in the heliosphere. Astron. Astrophys. 434, 309–316 (2005).

    Article  ADS  Google Scholar 

  28. Lugaz, N., Manchester, W. B. IV & Gombosi, T. I. Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys. J. 634, 651–662 (2005).

    Article  ADS  Google Scholar 

  29. Hayashi, K., Zhao, X-P. & Liu, Y. MHD simulation of two successive interplanetary disturbances driven by cone-model parameters in IPS-based solar wind. Geophys. Res. Lett. 33, 20103 (2006).

    Article  ADS  Google Scholar 

  30. Xiong, M., Zheng, H., Wu, S. T., Wang, Y. & Wang, S. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness. J. Geophys. Res. 112, A11103 (2007).

    Article  ADS  Google Scholar 

  31. Xiong, M., Zheng, H. & Wang, S. Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2. Oblique collision. J. Geophys. Res. 114, A11101 (2009).

    Article  ADS  Google Scholar 

  32. Shen, F. et al. Three-dimensional MHD simulation of two coronal mass ejections’ propagation and interaction using a successive magnetized plasma blobs model. J. Geophys. Res. 116, A09103 (2011).

    ADS  Google Scholar 

  33. Howard, R. A. et al. Sun earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008).

    Article  ADS  Google Scholar 

  34. Kaiser, M. L. et al. The stereo mission: An introduction. Space Sci. Rev. 136, 5–16 (2008).

    Article  ADS  Google Scholar 

  35. Kilpua, E. K. J. et al. STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys. 27, 4491–4503 (2009).

    Article  ADS  Google Scholar 

  36. Sheeley, N. R. Jr, Walters, J. H., Wang, Y-M. & Howard, R. A. Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739–24768 (1999).

    Article  ADS  Google Scholar 

  37. Davies, J. A. et al. A synoptic view of solar transient evolution in the inner heliosphere using the heliospheric imagers on STEREO. Geophys. Res. Lett. 36, L02102 (2009).

    Article  ADS  Google Scholar 

  38. Liu, Y. et al. Reconstructing coronal mass ejections with coordinated imaging and in situ observations: Global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762–1777 (2010).

    Article  ADS  Google Scholar 

  39. Lugaz, N. Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Sol. Phys. 267, 411–429 (2010).

    Article  ADS  Google Scholar 

  40. Lugaz, N. et al. Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493–499 (2010).

    Article  ADS  Google Scholar 

  41. Riley, P. & Crooker, N. U. Kinematic treatment of coronal mass ejection evolution in the solar wind. Astrophys. J. 600, 1035–1042 (2004).

    Article  ADS  Google Scholar 

  42. Liu, Y., Richardson, J. D., Belcher, J. W. & Kasper, J. C. Constraints on the global structure of magnetic clouds: Transverse size and curvature. J. Geophys. Res. 111, A12S03 (2006).

    Article  ADS  Google Scholar 

  43. Thernisien, A., Howard, R. & Vourlidas, A. Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763–773 (2006).

    Article  ADS  Google Scholar 

  44. Thernisien, A. Implementation of the graduated cylindrical shell model for the three-dimensional reconstruction of coronal mass ejections. Astrophys. J. Suppl. Ser. 194, 33 (2011).

    Article  ADS  Google Scholar 

  45. Vourlidas, A., Subramanian, P., Dere, K. P. & Howard, R. A. Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456–467 (2000).

    Article  ADS  Google Scholar 

  46. Hundhausen, A. J. Sizes and locations of coronal mass ejections—SMM observations from 1980 and 1984–1989. J. Geophys. Res. 98, 13177–13200 (1993).

    Article  ADS  Google Scholar 

  47. Vourlidas, A. & Howard, R. A. The proper treatment of coronal mass ejection brightness: A new methodology and implications for observations. Astrophys. J. 642, 1216–1221 (2006).

    Article  ADS  Google Scholar 

  48. Kumar, A. & Rust, D. M. Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 15667–15684 (1996).

    Article  ADS  Google Scholar 

  49. Wang, Y., Zhang, J. & Shen, C. An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J. Geophys. Res. 114, A10104 (2009).

    Article  ADS  Google Scholar 

  50. Hayakawa, H. & Kuninaka, H. Theory of the inelastic impact of elastic materials. Phase Transit. 77, 889–909 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of data from the SECCHI, IMPACT, PLASTIC and WAVES instruments on STEREO, LASCO on SOHO and WAVES on WIND. STEREO is the third mission in NASA’s Solar Terrestrial Probes programme, and SOHO is a mission of international cooperation between ESA and NASA. Y.W. also thanks N. Lugaz for some valuable discussion. This work is supported by grants from the 973 key project 2011CB811403, NSFC 41131065, 40904046, 40874075 and 41121003, CAS the Key Research Program KZZD-EW-01, 100-talent program, KZCX2-YW-QN511 and start-up fund, and MOEC 20113402110001 and the fundamental research funds for the central universities.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed the analysis of the collision and performed the theoretical derivations. C.S. found this event and carried out the data processing and calculations. S.W. gave constructive suggestions on the analysis of the collision. Y.L. gave some advice on the construction of the J-map and interpretation of the elongation angle. B.M. carried out the literature investigation and provided valuable additions. A.V. calculated the masses of the CMEs and gave many valuable suggestions. R.L. and P.Y. participated in the discussion and gave many suggestions. J.L. and Z.Z. made a contribution to the data analysis.

Corresponding author

Correspondence to Yuming Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 17185 kb)

Supplementary Movie

Supplementary Movie 1 (MP4 123767 kb)

Supplementary Movie

Supplementary Movie 2 (MP4 6659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, C., Wang, Y., Wang, S. et al. Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nature Phys 8, 923–928 (2012). https://doi.org/10.1038/nphys2440

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2440

  • Springer Nature Limited

This article is cited by

Navigation