Skip to main content
Log in

Avalanche amplification of a single exciton in a semiconductor nanowire

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

Interfacing single photons and electrons is a crucial element in sharing quantum information between remote solid-state qubits1,2,3,4,5,6,7,8. Semiconductor nanowires offer the unique possibility of combining optical quantum dots with avalanche photodiodes, thus enabling the conversion of an incoming single photon into a macroscopic current for efficient electrical detection. Currently, millions of excitation events are required to perform electrical readout of an exciton qubit state1,6. Here, we demonstrate multiplication of carriers from only a single exciton generated in a quantum dot after tunnelling into a nanowire avalanche photodiode. Owing to the large amplification of both electrons and holes (>104), we reduce by four orders of magnitude the number of excitation events required to electrically detect a single exciton generated in a quantum dot. This work represents a significant step towards achieving single-shot electrical readout and offers a new functionality for on-chip quantum information circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Single quantum dot in a nanowire APD.
Figure 2: Single photon detection with a nanowire photodiode.
Figure 3: Resonant single photon detection in the quantum dot.

Similar content being viewed by others

References

  1. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

  2. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  ADS  Google Scholar 

  3. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  4. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  5. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  6. Michaelis de Vasconcellos, S., Gordon, S., Bichler, M., Meier, T. & Zrenner, A. Coherent control of a single exciton qubit by optoelectronic manipulation. Nature Photon. 4, 545–548 (2010).

    Article  ADS  Google Scholar 

  7. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  ADS  Google Scholar 

  8. Benny, Y. et al. Coherent optical writing and reading of the exciton spin state in single quantum dots. Phys. Rev. Lett. 106, 040504 (2011).

    Article  ADS  Google Scholar 

  9. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  10. Vrijen, R. & Yablonovitch, E. A spin-coherent semiconductor photo-detector for quantum communication. Physica E 10, 569–575 (2001).

    Article  ADS  Google Scholar 

  11. Kosaka, H. et al. Spin state tomography of optically injected electrons in a semiconductor. Nature 457, 702–705 (2009).

    Article  ADS  Google Scholar 

  12. Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

    Article  ADS  Google Scholar 

  13. Kardynal, B. E., Yuan, Z. L. & Shields, A. J. An avalanche-photodiode-based photon-number-resolving detector. Nature Photon. 2, 425–428 (2008).

    Article  Google Scholar 

  14. Yang, C., Barrelet, C. J., Capasso, F. & Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 6, 2929–2934 (2006).

    Article  ADS  Google Scholar 

  15. Hayden, O., Agarwal, R. & Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nature Mater. 5, 352–356 (2006).

    Article  ADS  Google Scholar 

  16. Reimer, M. E. et al. Single photon emission and detection at the nanoscale utilizing semiconductor nanowires. J. Nanophoton. 5, 053502 (2011).

    Article  ADS  Google Scholar 

  17. Gabor, N. M., Zhong, Z., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  ADS  Google Scholar 

  18. Tomioka, K., Motohisa, J., Hara, S., Hiruma, K. & Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639–1644 (2010).

    Article  ADS  Google Scholar 

  19. Heurlin, M. et al. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 11, 2028–2031 (2011).

    Article  ADS  Google Scholar 

  20. Messing, M. E. et al. Growth of straight InAs-on-GaAs nanowire heterostructures. Nano Lett. 11, 3899–3905 (2011).

    Article  ADS  Google Scholar 

  21. Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

    Article  ADS  Google Scholar 

  22. Pearsall, T. P. Threshold energies for impact ionization by electrons and holes in InP. Appl. Phys. Lett. 35, 168–170 (1979).

    Article  ADS  Google Scholar 

  23. Algra, R. E. et al. Twinning superlattices in indium phosphide nanowires. Nature 456, 369–372 (2008).

    Article  ADS  Google Scholar 

  24. Reimer, M. E. et al. Bright single-photon sources in bottom-up tailored nanowires. Nature Commun. 3, 737 (2012).

    Article  Google Scholar 

  25. Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Mater. 9, 239–244 (2010).

    Article  ADS  Google Scholar 

  26. Beham, E., Zrenner, A., Findeis, F., Bichler, M. & Abstreiter, G. Nonlinear ground-state absorption observed in a single quantum dot. Appl. Phys. Lett. 79, 2808–2810 (2001).

    Article  ADS  Google Scholar 

  27. van Kouwen, M. P. et al. Single quantum dot nanowire photodetectors. Appl. Phys. Lett. 97, 113108 (2010).

    Article  ADS  Google Scholar 

  28. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  ADS  Google Scholar 

  29. Stotz, J. A. H. & Freeman M. R. A stroboscopic scanning solid immersion lens microscope. Rev. Sci. Instrum. 68, 4468–4477 (1997).

    Article  ADS  Google Scholar 

  30. Aspnes, D. E. & Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 27, 985–1009 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Rarity and S.M. Frolov for useful scientific discussions. This work was supported by the Netherlands Organization for Scientific Research (NWO), the Dutch Organization for Fundamental Research on Matter (FOM), the European Research Council and a DARPA QUEST grant.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived and designed by G.B., M.E.R. and V.Z., and were carried out by G.B. and M.E.R. The sample was grown by M.H. and E.P.A.M.B. and contacted by M.E.R. The data were analysed by G.B., M.E.R. and V.Z. The manuscript was written by G.B. and M.E.R. with input from M.H., E.P.A.M.B., L.P.K. and V.Z.

Corresponding author

Correspondence to Gabriele Bulgarini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 880 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulgarini, G., Reimer, M., Hocevar, M. et al. Avalanche amplification of a single exciton in a semiconductor nanowire. Nature Photon 6, 455–458 (2012). https://doi.org/10.1038/nphoton.2012.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.110

  • Springer Nature Limited

This article is cited by

Navigation