Skip to main content
Log in

Quantum Hall effect in black phosphorus two-dimensional electron system

  • Letter
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs)1,2,3,4,5. Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus 2DES. The high quality is achieved by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate6,7; the graphite gate screens the impurity potential in the 2DES and brings the carrier Hall mobility up to 6,000 cm2 V−1 s−1. The exceptional mobility enabled us to observe the quantum Hall effect and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The device structure and mobility characterization of the black phosphorus 2DHG.
Figure 2: The QH effect in the black phosphorus 2DHG.
Figure 3: Measurement of the QH energy gaps at ν = 1 and 2.
Figure 4: Probing the LL energetics in a tilted magnetic field.

Similar content being viewed by others

References

  1. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  2. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  3. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  4. Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  Google Scholar 

  5. Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

    Article  Google Scholar 

  6. Ponomarenko, L. A. et al. Tunable metal-insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011).

    Article  CAS  Google Scholar 

  7. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  8. Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  Google Scholar 

  9. Sarma, S. D. & Pinczuk, A. Perspectives in Quantum Hall Effects (Wiley, 2004).

    Google Scholar 

  10. Tsui, D. C. & Gossard, A. C. Resistance standard using quantization of the Hall resistance of GaAs-AlxGa1−xAs heterostructures. Appl. Phys. Lett. 38, 550–552 (1981).

    Article  CAS  Google Scholar 

  11. Khan, M. A., Kuznia, J. N., Hove, J. M. V., Pan, N. & Carter, J. Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions. Appl. Phys. Lett. 60, 3027–3029 (1992).

    Article  CAS  Google Scholar 

  12. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  13. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  14. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    Article  CAS  Google Scholar 

  15. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  Google Scholar 

  16. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  17. Fei, R. & Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).

    Article  CAS  Google Scholar 

  18. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    Article  CAS  Google Scholar 

  19. Liu, Q., Zhang, X., Abdalla, L. B., Fazzio, A. & Zunger, A. Electric field induced topological phase transition in two-dimensional few-layer black phosphorus. Nano Lett. 15, 1222–1228 (2015).

    Article  Google Scholar 

  20. Xiang, Z. J. et al. Pressure-induced Lifshitz transition in black phosphorus. Phys. Rev. Lett. 115, 186403 (2015).

  21. Akahama, Y., Endo, S. & Narita, S. Electrical properties of black phosphorus single crystals. J. Phys. Soc. Jpn 52, 2148–2155 (1983).

    Article  CAS  Google Scholar 

  22. Li, L. et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nature Nanotech. 10, 608–613 (2015).

    Article  CAS  Google Scholar 

  23. Tayari, V. et al. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nature Commun. 6, 7702 (2015).

    Article  CAS  Google Scholar 

  24. Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature Commun. 6, 7315 (2015).

    Article  CAS  Google Scholar 

  25. Gillgren, N. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015).

    Article  Google Scholar 

  26. Cao, Y. et al. Quality heterostructures from two dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 15, 4914–4921 (2015).

    Article  CAS  Google Scholar 

  27. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  28. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2006).

    Book  Google Scholar 

  29. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  30. Ando, T. & Uemura, Y. Theory of oscillatory g factor in an MOS inversion layer under strong magnetic fields. J. Phys. Soc. Jpn 37, 1044–1052 (1974).

    Article  CAS  Google Scholar 

  31. Nicholas, R. J., Haug, R. J., Klitzing, K. v. & Weimann, G. Exchange enhancement of the spin splitting in a GaAs-GaxAl1-xAs heterojunction. Phys. Rev. B 37, 1294–1302 (1988).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article  CAS  Google Scholar 

  33. Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nature Phys. 11, 347–351 (2015).

    Article  CAS  Google Scholar 

  34. Fang, F. F. & Stiles, P. J. Effects of a tilted magnetic field on a two-dimensional electron gas. Phys. Rev. 174, 823–828 (1968).

    Article  CAS  Google Scholar 

  35. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hamilton, L. Yang for helpful discussions. We also thank S. Hannahs, T. Murphy, E. Sang Choi, D. Graf, J. Billings, B. Pullum, L. Balicas, L. Pi, C. Xi for help with measurements in DC high magnetic fields, J. Wang, Z. Xia for help with measurements in pulsed magnetic fields, and P. Kim, X. Liu, L. Wang for help with the dry-transfer technique. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement no. DMR-1157490, the State of Florida, and the US Department of Energy. A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS. Measurements in pulsed magnetic field were carried out at Wuhan National High Magnetic Field Center, China. Part of the sample fabrication was conducted at Fudan Nano-fabrication Lab. L.L., F. Y. and Y.Z. acknowledge support from NSF of China (grant nos. 11425415 and 11421404) and National Basic Research Program of China (973 Program; grant no. 2013CB921902). L.L. and Y.Z. also acknowledge support from Samsung Global Research Outreach (GRO) Program. G.J.Y and X.H.C. acknowledge support from the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (grant no. XDB04040100), the National Basic Research Program of China (973 Program; grant no. 2012CB922002) and NSF of China. Z.Z. and Y.W. are supported by Ministry of Science and Technology of China (grant no. 2015CB921000). W.L. and K.C. acknowledge support from NSF of China (grant no. 11434010). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan. T.T. also acknowledges support by a Grant-in-Aid for Scientific Research on Innovative Areas, ‘Nano Informatics’ (grant nos. 262480621 and 25106006) from JSPS.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and F.Y. fabricated the black phosphorus devices, performed transport measurements and analysed the data. Z. Z. helped with the sample fabrication and transport measurements. G.J.Y. and X.H.C. grew the bulk black phosphorus crystals. Z.Z. and L.L. helped with the measurements in a pulsed high magnetic field. W.L., X.Z. and K.C. did theoretical calculations. K.W. and T. T. grew the bulk hBN. Y.Z., X.H.C. and Y.W. co-supervised the project. L.L., F.Y. and Y.Z. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Xian Hui Chen or Yuanbo Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yang, F., Ye, G. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nature Nanotech 11, 593–597 (2016). https://doi.org/10.1038/nnano.2016.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.42

  • Springer Nature Limited

This article is cited by

Navigation