Skip to main content
Log in

Presynaptic fluctuations and release-independent depression

  • Brief Communication
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

Although vesicle depletion contributes to short-term depression, several studies have reported that the release probability can be transiently depressed even if an action potential fails to evoke release. Here we argue that stochastic fluctuation in the release machinery can give rise to apparent release-independent depression as a result of sampling bias. The relationship between this apparent depression and the interstimulus interval provides a window on the kinetics of state transitions of the release apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Apparent release-independent depression observed in CA1 pyramidal neurons, in response to minimal stimulation of Schaffer collaterals (interstimulus interval, 8 ms; details in ref. 13 and Supplementary Data).
Figure 2: Monte Carlo simulations yielding apparent release-independent short-term synaptic depression (details in text).

Similar content being viewed by others

References

  1. Zucker, R.S. & Regehr, W.G. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  2. Dobrunz, L.E., Huang, E.P. & Stevens, C.F. Proc. Natl. Acad. Sci. USA 94, 14843–14847 (1997).

    Article  CAS  Google Scholar 

  3. Thomson, A.M. & Bannister, A.P. J. Physiol. (Lond.) 519, 57–70 (1999).

    Article  CAS  Google Scholar 

  4. Brody, D.L. & Yue, D.T. J. Neurosci. 20, 2480–2494 (2000).

    Article  CAS  Google Scholar 

  5. Hanse, E. & Gustafsson, B. J. Physiol. (Lond.) 531, 481–493 (2001).

    Article  CAS  Google Scholar 

  6. Hanse, E. & Gustafsson, B. J. Neurosci. 21, 8362–8369 (2001).

    Article  CAS  Google Scholar 

  7. Schneggenburger, R. & Neher, E. Curr. Opin. Neurobiol. 15, 266–274 (2005).

    Article  CAS  Google Scholar 

  8. Sudhof, T.C. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  Google Scholar 

  9. Finley, M.F., Patel, S.M., Madison, D.V. & Scheller, R.H. J. Neurosci. 22, 1266–1272 (2002).

    Article  CAS  Google Scholar 

  10. Hu, K. et al. Nature 415, 646–650 (2002).

    Article  CAS  Google Scholar 

  11. Alle, H. & Geiger, J.R. Science 311, 1290–1293 (2006).

    Article  CAS  Google Scholar 

  12. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Nature 441, 761–765 (2006).

    Article  CAS  Google Scholar 

  13. Rusakov, D.A. & Fine, A. Neuron 37, 287–297 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Scott and C. Henneberger for comments. Supported by the Medical Research Council, the Wellcome Trust and the European Commission (Eurohead, LSHM-CT-2004-504837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill E Volynski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volynski, K., Rusakov, D. & Kullmann, D. Presynaptic fluctuations and release-independent depression. Nat Neurosci 9, 1091–1093 (2006). https://doi.org/10.1038/nn1746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1746

  • Springer Nature America, Inc.

This article is cited by

Navigation