Skip to main content
Log in

A unique and universal molecular barcode array

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

Molecular barcode arrays allow the analysis of thousands of biological samples in parallel through the use of unique 20-base-pair (bp) DNA tags. Here we present a new barcode array, which is unique among microarrays in that it includes at least five replicates of every tag feature. The use of smaller dispersed replicate features dramatically improves performance versus a single larger feature and allows the correction of previously undetectable hybridization defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Description of the competitive growth assay.
Figure 2: Ability to resolve known TAG ratios.
Figure 3: Utilization of feature replicates to detect and mask array defects.

Similar content being viewed by others

References

  1. Winzeler, E.A. et al. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  2. Giaever, G. et al. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  3. Lum, P.Y. et al. Cell 116, 121–137 (2004).

    Article  CAS  Google Scholar 

  4. Ooi, S.L., Shoemaker, D.D. & Boeke, J.D. Science 294, 2552–2556 (2001).

    Article  CAS  Google Scholar 

  5. Birrell, G.W., Giaever, G., Chu, A.M., Davis, R.W. & Brown, J.M. Proc. Natl. Acad. Sci. USA 98, 12608–12613 (2001).

    Article  CAS  Google Scholar 

  6. Birrell, G.W. et al. Proc. Natl. Acad. Sci. USA 99, 8778–8783 (2002).

    Article  CAS  Google Scholar 

  7. Steinmetz, L.M. et al. Nat. Genet. 31, 400–404 (2002).

    Article  CAS  Google Scholar 

  8. Giaever, G. Trends Pharmacol. Sci. 24, 444–446 (2003).

    Article  CAS  Google Scholar 

  9. Lee, W. et al. PLoS Genet. 1, e24 (2005).

    Article  Google Scholar 

  10. Hardenbol, P. et al. Nat. Biotechnol. 21, 673–678 (2003).

    Article  CAS  Google Scholar 

  11. Fischer, K.D. et al. Nature 374, 474–477 (1995).

    Article  CAS  Google Scholar 

  12. Paddison, P.J. et al. Nature 428, 427–431 (2004).

    Article  CAS  Google Scholar 

  13. Shoemaker, D.D., Lashkari, D.A., Morris, D., Mittmann, M. & Davis, R.W. Nat. Genet. 14, 450–456 (1996).

    Article  CAS  Google Scholar 

  14. Giaever, G. et al. Nat. Genet. 21, 278–283 (1999).

    Article  CAS  Google Scholar 

  15. Eason, R.G. et al. Proc. Natl. Acad. Sci. USA 101, 11046–11051 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the US National Human Genome Research Institute. We thank B. St. Onge, M. Hillenmeyer and S. Brachat for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guri Giaever.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Use of unassigned tag probes to estimate background hybridization. (PDF 136 kb)

Supplementary Figure 2

Effect of repairs on tag performance. (PDF 237 kb)

Supplementary Table 1

Detailed information on the repaired tags. (PDF 160 kb)

Supplementary Methods (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, S., Fung, E., Jaramillo, D. et al. A unique and universal molecular barcode array. Nat Methods 3, 601–603 (2006). https://doi.org/10.1038/nmeth905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth905

  • Springer Nature America, Inc.

This article is cited by

Navigation