Skip to main content
Log in

Effective detection of variation in single-cell transcriptomes using MATQ-seq

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

Abstract

The quantification of transcriptional variation in single cells, particularly within the same cell population, is currently limited by the low sensitivity and high technical noise of single-cell RNA-seq assays. We report multiple annealing and dC-tailing-based quantitative single-cell RNA-seq (MATQ-seq), a highly sensitive and quantitative method for single-cell sequencing of total RNA. By systematically determining technical noise, we show that MATQ-seq captures genuine biological variation between whole transcriptomes of single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Coverage, sensitivity and accuracy of MATQ-seq compared with SMART-seq2.
Figure 2: Principal component analysis (PCA) indicates successful capture of biological variation between single cells.
Figure 3: Comparison between single cells and single-cell averages for identifying genuine biological variation.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Tang, F. et al. Nat. Methods 6, 377–382 (2009).

    Article  CAS  Google Scholar 

  2. Ramsköld, D. et al. Nat. Biotechnol. 30, 777–782 (2012).

    Article  Google Scholar 

  3. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. Cell Rep. 2, 666–673 (2012).

    Article  CAS  Google Scholar 

  4. Picelli, S. et al. Nat. Methods 10, 1096–1098 (2013).

    Article  CAS  Google Scholar 

  5. Wu, A.R. et al. Nat. Methods 11, 41–46 (2014).

    Article  CAS  Google Scholar 

  6. Islam, S. et al. Nat. Methods 11, 163–166 (2014).

    Article  CAS  Google Scholar 

  7. Streets, A.M. et al. Proc. Natl. Acad. Sci. USA 111, 7048–7053 (2014).

    Article  CAS  Google Scholar 

  8. Jaitin, D.A. et al. Science 343, 776–779 (2014).

    Article  CAS  Google Scholar 

  9. Fan, X. et al. Genome Biol. 16, 148 (2015).

    Article  Google Scholar 

  10. Chapman, A.R. et al. PLoS One 10, e0120889 (2015).

    Article  Google Scholar 

  11. Briese, M. et al. Nucleic Acids Res. 44, e33 (2015).

    Article  Google Scholar 

  12. Marinov, G.K. et al. Genome Res. 24, 496–510 (2014).

    Article  CAS  Google Scholar 

  13. Grün, D., Kester, L. & van Oudenaarden, A. Nat. Methods 11, 637–640 (2014).

    Article  Google Scholar 

  14. Elowitz, M.B., Levine, A.J., Siggia, E.D. & Swain, P.S. Science 297, 1183–1186 (2002).

    Article  CAS  Google Scholar 

  15. Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Cell 123, 1025–1036 (2005).

    Article  CAS  Google Scholar 

  16. Cai, L., Friedman, N. & Xie, X.S. Nature 440, 358–362 (2006).

    Article  CAS  Google Scholar 

  17. Raj, A. & van Oudenaarden, A. Cell 135, 216–226 (2008).

    Article  CAS  Google Scholar 

  18. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Science 338, 1622–1626 (2012).

    Article  CAS  Google Scholar 

  19. Kivioja, T. et al. Nat. Methods 9, 72–74 (2011).

    Article  Google Scholar 

  20. Battich, N., Stoeger, T. & Pelkmans, L. Cell 163, 1596–1610 (2015).

    Article  CAS  Google Scholar 

  21. Kuanwei Sheng, C.Z. Protocol Exchange http://dx.doi.org/10.1038/protex.2016.088 (2016).

  22. Zhulidov, P.A. et al. Nucleic Acids Res. 32, e37 (2004).

    Article  Google Scholar 

  23. Huang da, W. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the McNair Scholarship and McNair Single Cell Initiative. We are grateful to the McNair family and C. Neblett for their kind support. We would like to thank Z. Hu, Y. Zhao and J. Yuan for their help. The MCF10A cell line was generously provided by S. Zhang (Baylor College of Medicine). We also would like to thank S. Rosenberg, C. Herman and H. Dierick for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

K.S. and C.Z. developed the MATQ-seq assay, performed the data analysis and wrote the manuscript. K.S., W.C., Y.N. and Q.D. performed the single-cell RNA sequencing.

Corresponding author

Correspondence to Chenghang Zong.

Ethics declarations

Competing interests

Baylor College of Medicine has submitted a patent application on MATQ-seq.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24 and Supplementary Tables 1–4. (PDF 4066 kb)

Supplementary Data 1

ERCC mapping data. (XLSX 12 kb)

Supplementary Data 2

Exon-based gene list. (XLSX 20 kb)

Supplementary Data 3

Intron-based gene list. (XLSX 22 kb)

Supplementary Data 4

Exon-based transcriptional factors. (XLSX 15 kb)

Supplementary Data 5

Intron-based transcriptional factors. (XLSX 17 kb)

Supplementary Software

MATLAB Scripts (ZIP 28495 kb)

Supplementary Protocol

MATQ-seq protocol (PDF 168 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, K., Cao, W., Niu, Y. et al. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods 14, 267–270 (2017). https://doi.org/10.1038/nmeth.4145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4145

  • Springer Nature America, Inc.

This article is cited by

Navigation