Skip to main content

Advertisement

Log in

Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene

  • Letter
  • Published:

From Nature Genetics

View current issue Submit your manuscript

Abstract

Achondrogenesis type IB (ACG-IB) is a recessively inherited chondrodysplasia characterized by extremely poor skeletal development and perinatal death1–6. A defect in sulphate metabolism leading to reduced sulphation of proteoglycans has been reported in one case7. The gene for diastrophic dysplasia (DID), a milder chondrodysplasia, was recently shown to encode a sulphate transporter (DTDST)8. We set out to test whether mutations in DTDST might be the cause of ACG-IB using cell cultures, cartilage samples and DMA from six patients. We found that ACGIB cartilage contains less sulphate than control cartilage, and that a sulphation defect is present in all ACG-IB cells and is caused by impaired sulphate uptake. Seven DTDST mutations accounting for all twelve chromosomes were identified in six ACG-IB patients. Thus, ACG-IB and DTD are allelic disorders. While DTD is associated with reduced DTDST expression, ACG-IB is produced by homozy-gosity or compound heterozygos-ity for structural mutations predicting little or no residual activity of the sulphate transporter and represents the null phenotype of DTDST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fraccaro, M. Contribute allo studio del mesenchima osteopoietico— l'acondrogenesi. Folia Hereof. Path. 1, 190–213 (1952).

    Google Scholar 

  2. Spranger, J. et al. International Classification of Osteochondrodysplasias. Eur. J. Pediat. 151, 407–415 (1992).

    Article  CAS  Google Scholar 

  3. Norton, W.A. & Hecht, J.T. The Chondrodysplasias. In Connective Tissue and its Heritable Disorders—Molecular, Genetics, and Medical Aspects (eds Royce, P.M. & Steinmann, B.) 641–675 (Wiley-Uss, New York 1993).

    Google Scholar 

  4. Rimoin, D.L. & Lachman, R.S. Genetic disorders of the osseous skeleton. In: Heritable Disorders of Connective Tissue, 5th ed (ed. Beighton, P.) 557–689 (Mosby-Year Book, St. Louis 1993).

    Google Scholar 

  5. Borochowitz, Z. et al. Achondrogenesis type I: delineation of further heterogeneity and identification of two distinct subgroups. J. Pediat. 112, 23–31 (1988).

    Article  CAS  Google Scholar 

  6. van der Marten, H.J. et al. Achondrogenesis-Hypochondrogenesis: the spectrum of chondrogenesis imperfecta. Pediatr. Pathol. 8, 571–597 (1988).

    Article  Google Scholar 

  7. Superti-Furga, A. A defect in the metabolic activation of sulfate in a patient with achondrogenesis type IB. Am. J. Hum. Genet. 55, 1137–1145 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hastbacka, J. et al. The diastrophic dysplasia gene encodes a novel sulfate transporter positional cloning by fine-structure linkage disequilibrium mapping. Cell 78, 1073–1087 (1994).

    Article  CAS  Google Scholar 

  9. Venn, M. & Maroudas, A. Chemical composition and swelling of normal and osteoarthnotic femoral cartilage I. Chemical composition. Ann. Rheum. Dis. 36, 121–129 (1977).

    Article  CAS  Google Scholar 

  10. Urban, J.P.G., Hall, A.C. & Gehl, K.A. Regulation of matrix synthesis rates by theionic and osmotic environment of articular chondrocytes. J. Cell Physiol. 154, 262–270 (1993).

    Article  CAS  Google Scholar 

  11. Esko, J.D., Elgavish, A., Prasthofer, T., Taylor, W.H. & Weinke, J.L. Sulfate transport-deficient mutants of Chinese hamster ovary cells—sulfation of glycosaminogylcans dependent on cysteine. J. Biol. Chem. 261, 15725–15733 (1986).

    CAS  PubMed  Google Scholar 

  12. Bissig, M., Hagenbuch, B., Stieger, R., Koller, T. & Meier, R.J. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J. Biol. Chem. 269, 3017–3021 (1994).

    CAS  PubMed  Google Scholar 

  13. Hästbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet. 2, 204–211 (1992).

    Article  Google Scholar 

  14. Spranger, J., Winterpacht, A. & Zabel, B. The type II collagenopathies: a spectrum of Chondrodysplasias. Eur. J. Pediatr. 153, 56–65 (1994).

    CAS  PubMed  Google Scholar 

  15. Tavormina, P.L. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 (1995).

    Article  CAS  Google Scholar 

  16. Bellus, G.A. et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nature Genet. 10, 357–359 (1995).

    Article  CAS  Google Scholar 

  17. Sharony, R., Browne, C., Lachman, R.S. & Rimoin, D.L. Prenatal diagnosis of the skeletal dysplasias. Am. J. Obstet Gynecol. 169, 668–675 (1993).

    Article  CAS  Google Scholar 

  18. Budowle, B., Chakraborty, R., Giusti, A.M., Eisenberg, A.J. & Allen, R.C. Analysis of the VNTR Locus D1S80 by the PCR followed by high-resolution PAGE. Am. J. Hum. Genet. 48, 137–144 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Superti-Furga, A., Hästbacka, J., Wilcox, W. et al. Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat Genet 12, 100–102 (1996). https://doi.org/10.1038/ng0196-100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0196-100

  • Springer Nature America, Inc.

This article is cited by

Navigation