Skip to main content

Cartilage Collagens and Associated Disorders

  • Chapter
  • First Online:
The Collagen Superfamily and Collagenopathies

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 8))

Abstract

The tissue-specific extracellular matrix is important for normal development and tissue function, and therefore, mutations in genes responsible for ECM components cause a variety of serious inherited connective tissue disorders. In articular cartilage, the collagens are indispensably connected with the characteristic strength of the tissue. Cartilage disorders involve primarily alterations of collagen II, IX, and XI and the cartilage oligomeric protein (COMP). These diseases include a variety of clinical phenotypes from common osteoarthrosis to different types of mostly inherited chondrodysplasias. More than 100 distinct disorders of chondrodysplasias are described with different subclasses and disproportionate stature, short limbs, dwarfism, premature osteoarthrosis, and eye complications are typical findings for most of these disorders. The typical mutations in collagen genes are null mutations that result in the loss of protein and a reduction of total quantity of collagen protein in tissue. In contrast, small deletions or substitutions of bases can lead to the synthesis of mutated α-chains that are able to form a triple-helix. The altered molecule is secreted and results in a compromised supramolecular assembly with altered ECM suprastructures. In general, these human diseases are difficult to treat, especially when the pathological processes start before birth affecting the complete skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNBr:

Cyanogen bromid

COMP:

Cartilage oligomeric protein

DFNA13:

Deafness, autosomal dominant, type 13 (DFNA-13)

ECM:

Extracellular matrix

EDM2:

Epiphyseal dysplasia, multiple, 2

ER stress:

Endoplasmic reticulum stress

FGF:

Fibroblast growth factor

MED:

Multiple epiphyseal dysplasia

NMD:

Nonsense-mediated decay

OA:

Osteoarthritis

OI:

Osteogenesis imperfecta

PTC:

Premature termination codon

SED:

Spondyloepiphyseal Dysplasia

SEMD:

Metaphyseal chondrodysplasia, Schmid type

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

VNTR:

Variable number tandem repeats

Wnt:

Acronym of homologous wingless (wg) and Int-1

References

  • Annunen S, Paassilta P, Lohiniva J, Perala M, Pihlajamaa T, Karppinen J et al (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285(5426):409–412

    Article  CAS  PubMed  Google Scholar 

  • Arseni L, Lombardi A, Orioli D (2018) From structure to phenotype: impact of collagen alterations on human health. Int J Mol Sci 19(5)

    Google Scholar 

  • Bachmann A, Kiefhaber T, Boudko S, Engel J, Bachinger HP (2005) Collagen triple-helix formation in all-trans chains proceeds by a nucleation/growth mechanism with a purely entropic barrier. Proc Natl Acad Sci USA 102(39):13897–13902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baitner AC, Maurer SG, Gruen MB, Di Cesare PE (2000) The genetic basis of the osteochondrodysplasias. J Pediatr Orthop 20(5):594–605

    Article  CAS  PubMed  Google Scholar 

  • Barat-Houari M, Sarrabay G, Gatinois V, Fabre A, Dumont B, Genevieve D et al (2016) Mutation update for COL2A1 gene variants associated with type II Collagenopathies. Hum Mutat 37(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Bateman JF (2001) The molecular genetics of inherited cartilage disease. Osteoarthritis Cartilage 9(Suppl A)):S141–S149

    PubMed  Google Scholar 

  • Bateman JF, Boot-Handford RP, Lamande SR (2009) Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 10(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Bitner-Glindzicz M (2002) Hereditary deafness and phenotyping in humans. Br Med Bull 63:73–94

    Article  CAS  PubMed  Google Scholar 

  • Blaschke UK, Eikenberry EF, Hulmes DJ, Galla HJ, Bruckner P (2000) Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J Biol Chem 275(14):10370–10378

    Article  CAS  PubMed  Google Scholar 

  • Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S et al (2015) Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 167A(12):2869–2892

    Article  PubMed  CAS  Google Scholar 

  • Bonod-Bidaud C, Ruggiero F (2013) Inherited connective tissue disorders of collagens: lessons from targeted mutagenesis. In: Figurski D (ed) Genetic manipulation of dna and protein-examples from current research, InTech, pp 253–270

    Google Scholar 

  • Bonnemann CG, Cox GF, Shapiro F, Wu JJ, Feener CA, Thompson TG et al (2000) A mutation in the alpha 3 chain of type IX collagen causes autosomal dominant multiple epiphyseal dysplasia with mild myopathy. Proc Natl Acad Sci USA 97(3):1212–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boot-Handford RP, Briggs MD (2010) The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res 339(1):197–211

    Article  CAS  PubMed  Google Scholar 

  • Briggs MD, Choi H, Warman ML, Loughlin JA, Wordsworth P, Sykes BC et al (1994) Genetic mapping of a locus for multiple epiphyseal dysplasia (EDM2) to a region of chromosome 1 containing a type IX collagen gene. Am J Hum Genet 55(4):678–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs MD, Hoffman SM, King LM, Olsen AS, Mohrenweiser H, Leroy JG et al (1995) Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 10(3):330–336

    Article  CAS  PubMed  Google Scholar 

  • Briggs MD, Bell PA, Wright MJ, Pirog KA (2015) New therapeutic targets in rare genetic skeletal diseases. Expert Opin Orphan Drugs 3(10):1137–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruckner P (2006) Supramolecular structure of cartilage matrix. In: Seibel MJ, Robins SP, Bilezikian JP (eds) Dynamics of bone and cartilage metabolism. Elsevier, London, pp 407–420

    Chapter  Google Scholar 

  • Bruckner-Tuderman L, Bruckner P (1998) Genetic diseases of the extracellular matrix: more than just connective tissue disorders. J Mol Med (Berl) 76(3–4):226–237

    Article  CAS  Google Scholar 

  • Chan D, Jacenko O (1998) Phenotypic and biochemical consequences of collagen X mutations in mice and humans. Matrix Biol 17(3):169–184

    Article  CAS  PubMed  Google Scholar 

  • Cooper RR, Ponseti IV (1973) Metaphyseal dysotosis: description of an ultrastructural defect in the epiphyseal plate chondrocytes. J Bone Joint Surg Am 55(3):485–495

    Article  CAS  PubMed  Google Scholar 

  • Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perala M, Carter L et al (2001) A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet 69(5):969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng H, Huang X, Yuan L (2016) Molecular genetics of the COL2A1-related disorders. Mutat Res Rev Mutat Res 768:1–13

    Article  CAS  PubMed  Google Scholar 

  • Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Eyre DR, Weis MA, Wu JJ (2006) Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Gilbert-Barnes E, Langer LO Jr, Opitz JM, Laxova R, Sotelo-Arila C (1996) Kniest dysplasia: radiologic, histopathological, and scanning electronmicroscopic findings. Am J Med Genet 63(1):34–45

    Article  CAS  PubMed  Google Scholar 

  • Griffith AJ, Sprunger LK, Sirko-Osadsa DA, Tiller GE, Meisler MH, Warman ML (1998) Marshall syndrome associated with a splicing defect at the COL11A1 locus. Am J Hum Genet 62(4):816–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FFB et al (1995) Mutations in Cartilage Oligomeric Matrix Protein (Comp) Cause Pseudoachondroplasia. Am J Hum Genet 57(4):242

    CAS  Google Scholar 

  • Jackson GC, Marcus-Soekarman D, Stolte-Dijkstra I, Verrips A, Taylor JA, Briggs MD (2010) Type IX collagen gene mutations can result in multiple epiphyseal dysplasia that is associated with osteochondritis dissecans and a mild myopathy. Am J Med Genet A 152a(4):863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadler KE, Torre-Blanco A, Adachi E, Vogel BE, Hojima Y, Prockop DJ (1991) A type I collagen with substitution of a cysteine for glycine-748 in the alpha 1(I) chain copolymerizes with normal type I collagen and can generate fractal like structures. Biochemistry 30(20):5081–5088

    Article  CAS  PubMed  Google Scholar 

  • Kassner A, Hansen U, Miosge N, Reinhardt DP, Aigner T, Bruckner-Tuderman L et al (2003) Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils. Matrix Biol 22(2):131–143

    Article  CAS  PubMed  Google Scholar 

  • Krakow D (2015) Skeletal dysplasias. Clin Perinatol 42(2):301–319. viii

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamande SR, Bateman JF (2020) Genetic disorders of the extracellular matrix. Anat Rec (Hoboken) 303(6):1527–1542

    Article  CAS  Google Scholar 

  • Lightfoot SJ, Atkinson MS, Murphy G, Byers PH, Kadler KE (1994) Substitution of serine for glycine 883 in the triple-helix of the pro alpha 1 (I) chain of type I procollagen produces osteogenesis imperfecta type IV and introduces a structural change in the triple-helix that does not alter cleavage of the molecule by procollagen N-proteinase. J Biol Chem 269(48):30352–30357

    Article  CAS  PubMed  Google Scholar 

  • Luckman SP, Rees E, Kwan AP (2003) Partial characterization of cell-type X collagen interactions. Biochem J 372(Pt 2):485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo YY, Sinkeviciute D, He Y, Karsdal M, Henrotin Y, Mobasheri A et al (2017) The minor collagens in articular cartilage. Protein Cell 8(8):560–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malfait F, De Paepe A (2009) Bleeding in the heritable connective tissue disorders: mechanisms, diagnosis and treatment. Blood Rev 23(5):191–197

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Richards AJ, Yates JR, Scott JD, Pope M, Snead MP (1999) Stickler syndrome: further mutations in COL11A1 and evidence for additional locus heterogeneity. Eur J Hum Genet 7(7):807–814

    Article  CAS  PubMed  Google Scholar 

  • Marzin P, Cormier-Daire V (2020) New perspectives on the treatment of skeletal dysplasia. Ther Adv Endocrinol Metab 11:2042018820904016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard JA, Ippolito EG, Ponseti IV, Mickelson MR (1981) Histochemistry and ultrastructure of the growth plate in metaphyseal dysostosis: further observations on the structure of the cartilage matrix. J Pediatr Orthop 1(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Mayne R, Brewton RG, Mayne PM, Baker JR (1993) Isolation and characterization of the chains of type V/type XI collagen present in bovine vitreous. J Biol Chem 268(13):9381–9386

    Article  CAS  PubMed  Google Scholar 

  • McGuirt WT, Prasad SD, Griffith AJ, Kunst HP, Green GE, Shpargel KB et al (1999) Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 23(4):413–419

    Article  CAS  PubMed  Google Scholar 

  • Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108(1):191–197

    Article  CAS  PubMed  Google Scholar 

  • Melkoniemi M, Koillinen H, Mannikko M, Warman ML et al (2003) Collagen XI sequence variations in nonsyndromic cleft palate, Robin sequence and micrognathia. Eur J Hum 11(3):265–270

    Article  CAS  Google Scholar 

  • Muragaki Y, Mariman EC, van Beersum SE, Perala M, van Mourik JB, Warman ML et al (1996a) A mutation in COL9A2 causes multiple epiphyseal dysplasia (EDM2). Ann NY Acad Sci 785:303–306

    Article  CAS  PubMed  Google Scholar 

  • Muragaki Y, Mariman EC, van Beersum SE, Perala M, van Mourik JB, Warman ML et al (1996b) A mutation in the gene encoding the alpha 2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat Genet 12(1):103–105

    Article  CAS  PubMed  Google Scholar 

  • Murray LW, Rimoin DL (1988) Abnormal type II collagen in the spondyloepiphyseal dysplasias. Pathol Immunopathol Res 7(1–2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Murray LW, Bautista J, James PL, Rimoin DL (1989) Type II collagen defects in the chondrodysplasias. I. Spondyloepiphyseal dysplasias. Am J Hum Genet 45(1):5–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20(1):33–43

    Article  CAS  PubMed  Google Scholar 

  • Olsen BR (1995) New insights into the function of collagens from genetic analysis. Curr Opin Cell Biol 7(5):720–727

    Article  CAS  PubMed  Google Scholar 

  • Paassilta P, Lohiniva J, Annunen S, Bonaventure J, Le Merrer M, Pai L et al (1999) COL9A3: a third locus for multiple epiphyseal dysplasia. Am J Hum Genet 64(4):1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paassilta P, Lohiniva J, Goring HH, Perala M, Raina SS, Karppinen J et al (2001) Identification of a novel common genetic risk factor for lumbar disk disease. JAMA 285(14):1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  CAS  PubMed  Google Scholar 

  • Raghunath M, Bruckner P, Steinmann B (1994) Delayed triple-helix formation of mutant collagen from patients with osteogenesis imperfecta. J Mol Biol 236(3):940–949

    Article  CAS  PubMed  Google Scholar 

  • Rajpar MH, McDermott B, Kung L, Eardley R, Knowles L, Heeran M et al (2009) Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet 5(10):e1000691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reginato AM, Olsen BR (2002) The role of structural genes in the pathogenesis of osteoarthritic disorders. Arthritis Res 4(6):337–345

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris) 53(7):430–442

    Article  CAS  Google Scholar 

  • Richards AJ, Yates JR, Williams R, Payne SJ, Pope FM, Scott JD et al (1996) A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1 (XI) collagen. Hum Mol Genet 5(9):1339–1343

    Article  CAS  PubMed  Google Scholar 

  • Rimoin DL (1996) Molecular defects in the chondrodysplasias. Am J Med Genet 63(1):106–110

    Article  CAS  PubMed  Google Scholar 

  • Ritvaniemi P, Korkko J, Bonaventure J, Vikkula M, Hyland J, Paassilta P et al (1995) Identification of COL2A1 gene mutations in patients with chondrodysplasias and familial osteoarthritis. Arthritis Rheum 38(7):999–1004

    Article  CAS  PubMed  Google Scholar 

  • Schwartz NB, Domowicz M (2002) Chondrodysplasias due to proteoglycan defects. J Glycobiol 12(4):57r–68r

    Article  CAS  Google Scholar 

  • Robin NH, Moran RT, Ala-Kokko L (2017) Stickler syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) Gene reviews((R)). Seattle

    Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Spranger J (1998) The type XI collagenopathies. Pediatr Radiol 28(10):745–750

    Article  CAS  PubMed  Google Scholar 

  • Stickler GB, Hughes W, Houchin P (2001) Clinical features of hereditary progressive arthro-ophthalmopathy (Stickler syndrome): a survey. Genet Med 3(3):192–196

    Article  CAS  PubMed  Google Scholar 

  • Vikkula M, Metsaranta M, Ala-Kokko L (1994) Type II collagen mutations in rare and common cartilage diseases Annals of medicine. Ann Med 28(2):107–114

    Google Scholar 

  • Vikkula M, Mariman EC, Lui VC, Zhidkova NI, Tiller GE, Goldring MB et al (1995) Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 80(3):431–437

    Article  CAS  PubMed  Google Scholar 

  • Vogel H, Nilsson L, Rigler R, Voges KP, Jung G (1988) Structural fluctuations of a helical polypeptide traversing a lipid bilayer. Proc Natl Acad Sci USA 85(14):5067–5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasylenko MJ, Wedge JH, Houston CS (1980) Metaphyseal chondrodysplasia, Schmid type. A defect of ultrastructural metabolism: case report. J Bone Joint Surg Am 62(4):660–663

    Article  CAS  PubMed  Google Scholar 

  • Wilson R, Freddi S, Chan D, Cheah KS, Bateman JF (2005) Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem 280(16):15544–15552

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hansen, U. (2021). Cartilage Collagens and Associated Disorders. In: Ruggiero, F. (eds) The Collagen Superfamily and Collagenopathies. Biology of Extracellular Matrix, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-67592-9_4

Download citation

Publish with us

Policies and ethics