Skip to main content

Advertisement

Log in

Clearing clouds of uncertainty

  • Commentary
  • Published:

From Nature Climate Change

View current issue Submit your manuscript

Since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Geographical distribution of the annually averaged net cloud radiative effect at the top of the atmosphere, computed over 2001–2016 from CERES EBAF Ed4.0 (ref. 1).
Figure 2: Global average cloud feedbacks and their impact on climate sensitivity.
Figure 3: Assessed cloud feedbacks and key statements regarding cloud feedbacks from the five IPCC assessment reports.

References

  1. Loeb, N. G. et al. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  2. Zelinka, M. D., Zhou, C. & Klein, S. A. Geophys. Res. Lett. 43, 9259–9269 (2016).

    Article  Google Scholar 

  3. Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Academy of Sciences, 1979).

    Google Scholar 

  4. IPCC Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge Univ. Press, 1990).

  5. IPCC Climate Change 1995: The Science of Climate Change (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 1996).

  6. IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 2001).

  7. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  8. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  9. Bretherton, C. S. Phil. Trans. R. Soc. A 373, 20140415 (2015).

    Article  Google Scholar 

  10. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Geophys. Res. Lett. 42, 7767–7775 (2015).

    Article  Google Scholar 

  11. Mauritsen, T. & Stevens, B. Nat. Geosci. 8, 346–351 (2015).

    Article  CAS  Google Scholar 

  12. Tan, I., Storelvmo, T. & Zelinka, M. D. Science 352, 224–227 (2016).

    Article  CAS  Google Scholar 

  13. Andrews, T., Gregory, J. M. & Webb, M. J. J. Clim. 28, 1630–1648 (2015).

    Article  Google Scholar 

  14. Zhou, C., Zelinka, M. D. & Klein, S. A. Nat. Geosci. 9, 871–874 (2016).

    Article  CAS  Google Scholar 

  15. Gregory, J. M. & Andrews, T. Geophys. Res. Lett. 43, 3911–3920 (2016).

    Article  Google Scholar 

  16. Armour, K. C. Nat. Clim. Change 7, 331–335 (2017).

    Article  Google Scholar 

  17. Bony, S. et al. Nat. Geosci. 8, 261–268 (2015).

    Article  CAS  Google Scholar 

  18. Webb, M. J. et al. Geoscientific Model Dev. 10, 359–384 (2017).

    Article  CAS  Google Scholar 

  19. Geoffroy, O., Sherwood, S. C. & Fuchs, D. J. Adv. Model. Earth Syst. 9, 423–437 (2017).

    Article  Google Scholar 

  20. Stubenrauch, C. J. et al. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).

    Article  Google Scholar 

  21. Marvel, K. et al. J. Clim. 28, 4820–4840 (2015).

    Article  Google Scholar 

  22. Bony, S. et al. Surv. Geophys. http://dx.doi.org/10.1007/s10712-017-9428-0 (2017).

  23. Marchand, R. et al. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (2014).

    Google Scholar 

  24. Vial, J., Bony, S., Stevens, B. & Vogel, R. Surveys Geophys. http://doi.org/ccx4 (2017).

  25. Bodas-Salcedo, A., Andrews, T., Karmalkar, A. V. & Ringer, M. A. Geophys. Res. Lett. 43, 10938–10946 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The work of M.D.Z. and S.A.K. is supported by the Regional and Global Climate Modeling Program of the Office of Science of the US Department of Energy (DOE) and was performed under the auspices of the US DOE by LLNL under contract DE-AC52-07NA27344. D.A.R. was supported by the National Science Foundation under Grant AGS-1538532 to Colorado State University. M.J.W. is supported by the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the US DOE's Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank D. S. Linehan, S. Po-Chedley, B. D. Santer, and K. E. Taylor for stimulating discussions and comments on an earlier version of this Commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Zelinka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelinka, M., Randall, D., Webb, M. et al. Clearing clouds of uncertainty. Nature Clim Change 7, 674–678 (2017). https://doi.org/10.1038/nclimate3402

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3402

  • Springer Nature Limited

This article is cited by

Navigation