Skip to main content

Advertisement

Log in

Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Sphingosine 1-phosphate receptor 1 (S1P1) is critical for lymphocyte recirculation and is a clinical target for treatment of multiple sclerosis. By generating a short-duration S1P1 agonist and mice in which fluorescently tagged S1P1 replaces wild-type receptor, we elucidate physiological and agonist-perturbed changes in expression of S1P1 at a subcellular level in vivo. We demonstrate differential downregulation of S1P1 on lymphocytes and endothelia after agonist treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: RP-001 is an orthosteric, short-duration S1P1 selective agonist.
Figure 2: Function of S1P1-eGFP in Edg1eGFP/eGFP mice.
Figure 3: RP-001 causes changes in lymphocytic and endothelial S1P1-eGFP expression and localization.

Similar content being viewed by others

References

  1. Okamoto, H. et al. J. Biol. Chem. 273, 27104–27110 (1998).

    Article  CAS  Google Scholar 

  2. Liu, Y. et al. J. Clin. Invest. 106, 951–961 (2000).

    Article  CAS  Google Scholar 

  3. Allende, M.L. & Proia, R.L. Biochim. Biophys. Acta 1582, 222–227 (2002).

    Article  CAS  Google Scholar 

  4. Sanna, M.G. et al. Nat. Chem. Biol. 2, 434–441 (2006).

    Article  CAS  Google Scholar 

  5. Matloubian, M. et al. Nature 427, 355–360 (2004).

    Article  CAS  Google Scholar 

  6. Sanna, M.G. et al. J. Biol. Chem. 279, 13839–13848 (2004).

    Article  CAS  Google Scholar 

  7. Gonzalez-Cabrera, P.J. et al. Mol. Pharmacol. 74, 1308–1318 (2008).

    Article  CAS  Google Scholar 

  8. Salvadori, M. et al. Am. J. Transplant. 6, 2912–2921 (2006).

    Article  CAS  Google Scholar 

  9. Mandala, S. et al. Science 296, 346–349 (2002).

    Article  CAS  Google Scholar 

  10. Gräler, M.H. & Goetzl, E.J. FASEB J. 18, 551–553 (2004).

    Article  Google Scholar 

  11. O'Connor, P. et al. Neurology 72, 73–79 (2009).

    Article  CAS  Google Scholar 

  12. Comi, G. et al. Mult. Scler. 16, 197–207 (2010).

    Article  CAS  Google Scholar 

  13. Kappos, L. et al. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  Google Scholar 

  14. Allende, M.L., Dreier, J.L., Mandala, S. & Proia, R.L. J. Biol. Chem. 279, 15396–15401 (2004).

    Article  CAS  Google Scholar 

  15. Liu, G. et al. Nat. Immunol. 10, 769–777 (2009).

    Article  CAS  Google Scholar 

  16. Wang, W., Huang, M.C. & Goetzl, E.J. J. Immunol. 178, 4885–4890 (2007).

    Article  CAS  Google Scholar 

  17. Thangada, S. et al. J. Exp. Med. 207, 1475–1483 (2010).

    Article  CAS  Google Scholar 

  18. Mullershausen, F. et al. Nat. Chem. Biol. 5, 428–434 (2009).

    Article  CAS  Google Scholar 

  19. Grigorova, I.L. et al. Nat. Immunol. 10, 58–65 (2009).

    Article  CAS  Google Scholar 

  20. Wei, S.H. et al. Nat. Immunol. 6, 1228–1235 (2005).

    Article  CAS  Google Scholar 

  21. Igarashi, J. & Michel, T. J. Biol. Chem. 275, 32363–32370 (2000).

    Article  CAS  Google Scholar 

  22. Pham, T.H. et al. J. Exp. Med. 207, 17–27 (2010).

    Article  CAS  Google Scholar 

  23. Van Doorn, R. et al. Glia 58, 1465–1476 (2010).

    Article  Google Scholar 

  24. Marsolais, D. et al. Mol. Pharmacol. 74, 896–903 (2008).

    Article  CAS  Google Scholar 

  25. Marsolais, D. et al. Proc. Natl. Acad. Sci. USA 106, 1560–1565 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge R. Proia and M. Capecchi for providing plasmids used in the generation of the Edg1eGFP targeting construct. We thank G. Martin and S. Kupriyanov for aid in generating Edg1eGFP/eGFP mice. We thank B. Webb for aid with mass spectrometry. S.M.C. is supported by a US National Institutes of Health Immunology Training Grant T32 AI007606. H.R. is supported by US National Institutes of Health Grants NIH U01 AI074564, R01 AI055509 and U54 MH084512.

Author information

Authors and Affiliations

Authors

Contributions

S.M.C. and H.R. designed the experiments and wrote the manuscript. S.M.C. generated the S1P1-eGFP knock-in mice and performed the in vivo experiments and flow cytometric analysis. P.J.G.-C. and N.N. performed biochemical experiments. G.S. performed two-photon experiments. M.-T.S. performed in vitro characterization of RP-001 and W146 competition. L.H. and A.Y. synthesized RP-001. B.C. and F.S. performed in vitro characterization of RP-001.

Corresponding author

Correspondence to Hugh Rosen.

Ethics declarations

Competing interests

H.R. is scientific co-founder of Receptos Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Scheme 1, Supplementary Tables 1–3 and Supplementary Figures 1–12 (PDF 2779 kb)

Supplementary Video 1

Intravital two-photon imaging of a Edg1eGFP/eGFP lymph node cortex (MOV 2855 kb)

Supplementary Video 2

Extravital two-photon imaging of lymph nodes from Edg1eGFP/eGFP mice in response to vehicle treatment (MOV 7212 kb)

Supplementary Video 3

Extravital two-photon imaging of lymph nodes from Edg1eGFP/eGFP mice in response to RP-001 treatment (MOV 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahalan, S., Gonzalez-Cabrera, P., Sarkisyan, G. et al. Actions of a picomolar short-acting S1P1 agonist in S1P1-eGFP knock-in mice. Nat Chem Biol 7, 254–256 (2011). https://doi.org/10.1038/nchembio.547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.547

  • Springer Nature America, Inc.

This article is cited by

Navigation