Skip to main content
Log in

A synthetic biochemistry module for production of bio-based chemicals from glucose

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The synthetic PBG pathway for the conversion of glucose to polyhydroxybutyrate.
Figure 2: Semicontinuous production of PHB.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Zhang, Y.-H.P. ACS Catal. 1, 998–1009 (2011).

    Article  CAS  Google Scholar 

  2. Yu, X., Liu, T., Zhu, F. & Khosla, C. Proc. Natl. Acad. Sci. USA 108, 18643–18648 (2011).

    Article  CAS  Google Scholar 

  3. Schultheisz, H.L., Szymczyna, B.R., Scott, L.G. & Williamson, J.R. J. Am. Chem. Soc. 133, 297–304 (2011).

    Article  CAS  Google Scholar 

  4. Schultheisz, H.L., Szymczyna, B.R., Scott, L.G. & Williamson, J.R. ACS Chem. Biol. 3, 499–511 (2008).

    Article  CAS  Google Scholar 

  5. Rollin, J.A., Tam, T.K. & Zhang, Y.-H.P. Green Chem. 15, 1708–1719 (2013).

    Article  CAS  Google Scholar 

  6. Jewett, M.C. & Swartz, J.R. Biotechnol. Prog. 20, 102–109 (2004).

    Article  CAS  Google Scholar 

  7. Hold, C. & Panke, S. J. R. Soc. Interface 6 (suppl. 4), S507–S521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bujara, M., Schümperli, M., Billerbeck, S., Heinemann, M. & Panke, S. Biotechnol. Bioeng. 106, 376–389 (2010).

    CAS  PubMed  Google Scholar 

  9. Zhang, Y.-H.P. Biotechnol. Bioeng. 105, 663–677 (2010).

    CAS  PubMed  Google Scholar 

  10. Verlinden, R.A., Hill, D.J., Kenward, M.A., Williams, C.D. & Radecka, I. J. Appl. Microbiol. 102, 1437–1449 (2007).

    Article  CAS  Google Scholar 

  11. Singh, M., Kumar, P., Ray, S. & Kalia, V.C. Indian J. Microbiol. 55, 235–249 (2015).

    Article  CAS  Google Scholar 

  12. Hankermeyer, C.R. & Tjeerdema, R.S. Rev. Environ. Contam. Toxicol. 159, 1–24 (1999).

    CAS  PubMed  Google Scholar 

  13. Satoh, Y., Tajima, K., Tannai, H. & Munekata, M. J. Biosci. Bioeng. 95, 335–341 (2003).

    Article  CAS  Google Scholar 

  14. Jossek, R. & Steinbüchel, A. FEMS Microbiol. Lett. 168, 319–324 (1998).

    Article  CAS  Google Scholar 

  15. Liu, S.-J. & Steinbüchel, A. Appl. Microbiol. Biotechnol. 53, 545–552 (2000).

    Article  CAS  Google Scholar 

  16. Opgenorth, P.H., Korman, T.P. & Bowie, J.U. Nat. Commun. 5, 4113 (2014).

    Article  CAS  Google Scholar 

  17. Meile, L., Rohr, L.M., Geissmann, T.A., Herensperger, M. & Teuber, M. J. Bacteriol. 183, 2929–2936 (2001).

    Article  CAS  Google Scholar 

  18. Glenn, K. & Smith, K.S. J. Bacteriol. 197, 1157–1163 (2015).

    Article  CAS  Google Scholar 

  19. Zhang, S., Yasuo, T., Lenz, R.W. & Goodwin, S. Biomacromolecules 1, 244–251 (2000).

    Article  CAS  Google Scholar 

  20. Dien, B.S., Cotta, M.A. & Jeffries, T.W. Appl. Microbiol. Biotechnol. 63, 258–266 (2003).

    Article  CAS  Google Scholar 

  21. Gibson, D.G. et al. Science 319, 1215–1220 (2008).

    Article  CAS  Google Scholar 

  22. Kitagawa, M. et al. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 12, 291–299 (2005).

    CAS  Google Scholar 

  23. Sheu, D.-S., Chen, W.-M., Lai, Y.-W. & Chang, R.-C. J. Bacteriol. 194, 2620–2629 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US DOE grant DE-FC02-02ER63421 and ARPA-E grant DE-AR0000556.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the system design, design of experiments and data analysis. P.O. and T.P.K. performed the experiments. All the authors wrote the paper.

Corresponding author

Correspondence to James U Bowie.

Ethics declarations

Competing interests

The authors have formed a company, Invizyne Technologies, that will seek to exploit cell-free technologies.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1 and 2, Supplementary Tables 1–3 and Supplementary Note. (PDF 438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opgenorth, P., Korman, T. & Bowie, J. A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat Chem Biol 12, 393–395 (2016). https://doi.org/10.1038/nchembio.2062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2062

  • Springer Nature America, Inc.

This article is cited by

Navigation