Skip to main content
Log in

Metabolic reprogramming of periwinkle plant culture

  • Brief Communication
  • Published:

From Nature Chemical Biology

View current issue Submit your manuscript

Abstract

We transformed an alkaloid biosynthetic gene with reengineered substrate specificity into Catharanthus roseus. The resulting transgenic plant cell culture produced a variety of unnatural alkaloid compounds when cocultured with simple, achiral, commercially available precursors that the reengineered enzyme was designed to accept. This work demonstrates the power of genetic engineering to retailor the structures of complex alkaloid natural products in plant culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Unnatural alkaloid production in C. roseus hairy root culture expressing reengineered strictosidine synthase V214M.

Similar content being viewed by others

References

  1. Ganesan, A. Curr. Opin. Chem. Biol. 12, 306–317 (2008).

    Article  CAS  Google Scholar 

  2. Menzella, H.G. & Reeves, C.D. Curr. Opin. Microbiol. 10, 238–245 (2007).

    Article  CAS  Google Scholar 

  3. Yun, D.-J., Hashimoto, T. & Yamada, Y. Proc. Natl. Acad. Sci. USA 89, 11799–11803 (1992).

    Article  CAS  Google Scholar 

  4. Ye, X. et al. Science 287, 303–305 (2000).

    Article  CAS  Google Scholar 

  5. Katsuyama, Y., Funa, N., Miyahisa, I. & Horinouchi, S. Chem. Biol. 14, 613–621 (2007).

    Article  CAS  Google Scholar 

  6. Schmidt-Dannert, C., Umeno, D. & Arnold, F.H . Nat. Biotechnol. 18, 750–753 (2000).

    Article  CAS  Google Scholar 

  7. O'Connor, S.E. & Maresh, J.J. Nat. Prod. Rep. 23, 532–547 (2006).

    Article  CAS  Google Scholar 

  8. Minami, H. et al. Proc. Natl. Acad. Sci. USA 105, 7393–7398 (2008).

    Article  CAS  Google Scholar 

  9. Hawkins, K.M. & Smolke, C.D. Nat. Chem. Biol. 4, 564–573 (2008).

    Article  CAS  Google Scholar 

  10. Bernhardt, P., McCoy, E. & O'Connor, S.E. Chem. Biol. 14, 888–897 (2007).

    Article  CAS  Google Scholar 

  11. Ma, X. et al. Plant Cell 18, 907–920 (2006).

    Article  CAS  Google Scholar 

  12. Chen, S., Galan, M.C., Coltharp, C. & O'Connor, S.E. Chem. Biol. 13, 1137–1141 (2006).

    Article  CAS  Google Scholar 

  13. Loris, E. et al. Chem. Biol. 14, 979–985 (2007).

    Article  CAS  Google Scholar 

  14. Toivonen, L., Balsevich, J. & Kurz, W.G.W. Plant Cell Tissue Organ Cult. 18, 79–93 (1989).

    Article  CAS  Google Scholar 

  15. Hughes, E.H., Hong, S.-B., Shanks, J.V., San, K.-Y. & Gibson, S.I. Biotechnol. Prog. 18, 1183–1186 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. Shanks and C. Peebles (Iowa State) for detailed advice in the transformation procedure. CAMBIA is acknowledged for providing the pCAMBIA vectors, and N.-H. Chua (Rockefeller) is acknowledged for providing pTA7002. We thank L. Smeester (MIT) for assistance with rt-PCR, J.J. Maresh (MIT) for helpful discussions regarding the Agrobacterium transformation and N. Nims (MIT) for helpful suggestions regarding primer design for rt-PCR experiments. N. Yerkes (MIT) generously provided strictosidine standards. We thank T. Kutchan (Danforth Plant Science Center) for suggesting the pCAMBIA vector system. We gratefully acknowledge J. Simpson's (MIT) assistance in obtaining two-dimensional NMR data. This work was supported by the US National Science Foundation (MCB0719120). We acknowledge the US National Institutes of Health and the American Cancer Society for additional support.

Author information

Authors and Affiliations

Authors

Contributions

W.R. designed and performed all experiments and contributed to data analysis and manuscript writing. S.E.O. was the principal investigator of the project, contributed to data analysis and manuscript writing and provided funding.

Corresponding author

Correspondence to Sarah E O'Connor.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 1636 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runguphan, W., O'Connor, S. Metabolic reprogramming of periwinkle plant culture. Nat Chem Biol 5, 151–153 (2009). https://doi.org/10.1038/nchembio.141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.141

  • Springer Nature America, Inc.

This article is cited by

Navigation