Skip to main content

Alkaloid Synthesis in In Vitro Cultures of Catharanthus Roseus: Potential and Limitations

  • Chapter
  • First Online:
The Catharanthus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 296 Accesses

Abstract

Catharanthus roseus (L.) G. Don, Madagascar periwinkle, was among the first plants to be explored for the in vitro production of fine chemicals, due to the high value of the cytotoxic dimer alkaloids that it accumulates in very low amounts. That goal has not been reached despite several decades, although without a doubt, cell culture technology has resulted in an extremely important tool in understanding the molecular basis that control alkaloid formation. This chapter presents an account of the effects of different media components and culture conditions, in the cellular mechanisms governing alkaloid formation and how this knowledge has contributed to make today the Catharanthus alkaloid biosynthetic pathway one of the better known. This level of understanding now allows the application of cutting-edge biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babcock PA, Carew DP (1962) Tissue culture of Apocynaceae 1. Culture requirements and alkaloid analysis. Lloydia 25(4):209–213

    Google Scholar 

  • Campos-Tamayo F, Hernández-Domínguez E, Vázquez-Flota F (2008) Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann Bot 102(3):409–415

    Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, van der FitsL, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998). Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205(3):414–419

    Google Scholar 

  • Carew DP (1966) Growth of callus tissue of Catharanthus roseus in suspension culture. J Pharm Sci 5(10):1153–1154

    Article  Google Scholar 

  • Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220

    Article  CAS  Google Scholar 

  • Constabel F, Rambold S, Chatson KB, Kurz WGM, Kutney JP (1981) Alkaloid production in Catharanthus roseus (L.) G. Don. VI. Variation in alkaloid spectra of cell lines derived from one single leaf. Plant Cell Rep 1(1):3–5

    Google Scholar 

  • Constabel F. Gaudet-LaPrairie P, Kurz WGM, Kutney JP (1982) Alkaloid production in Catharanthus roseus cell cultures. Plant Cell Rep 1(4):139–142. https://doi.org/10.1007/BF00269182

  • Courtois D, Guern J (1980) Temperature response of Catharanthus roseus cells cultivated in liquid medium. Plant Sci Lett 17(4):473–482

    Article  CAS  Google Scholar 

  • Das A, Sarkar S, Bhattacharyya S, Gantait S (2020) Biotechnological advancements in Catharanthus roseus (L.) G. Don. Appl Microbiol Biotechnol 104(11):4811–4835. https://doi.org/10.1007/s00253-020-10592-1

  • De Ropp R (1947) The response of normal plant tissues and of crown-gall tumor tissues to synthetic growth hormones. Am J Bot 34(2):53–62

    Article  Google Scholar 

  • Farnsworth NR (1966) Biological and phytochemical screening of plants. J Pharm Sci 55(3):225–276

    Article  CAS  Google Scholar 

  • Harris AL, Nylund HB, Carew DP (1964) Tissue cultures studies of certain members of Apocynaceae. Lloydia 27(3):322–327

    CAS  Google Scholar 

  • Hernández-Domínguez E, Campos-Tamayo F (2004) Vázquez-Flota F (2008) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnol Lett 26(8):671–674

    Article  Google Scholar 

  • Hirata K, Horiuchi M, Ando T, Miyamoto K, Miura Y (1990) Vindoline and catharanthine production in multiple shoot culture of Catharanthus roseus. J Ferm Bioeng 70(3):193–195

    Article  CAS  Google Scholar 

  • Hong SB Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122(1):28–38

    Article  Google Scholar 

  • Knobloch KH, Berlin J (1980) Influence of medium composition on the formation of secondary compounds in cell suspension cultures of Catharanthus roseus (L.) G. Don. Z Naturforsch c 35(7–8):551–556

    Google Scholar 

  • Knobloch KH, Berlin J (1983) Influence of phosphate on the formation of the indole alkaloids and phenolic compounds in cell suspension cultures of Catharanthus roseus I. Comparison of enzyme activities and product accumulation. Plant Cell Tiss Org Cult 2(4):333–340

    Google Scholar 

  • Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biol 13(1):1–17

    Article  CAS  Google Scholar 

  • Liu DH, Cui LJ, Zhang LD, Sun XF, Tang KX (2011) Enhanced accumulation of catharanthine and vindoline in Catharanthus roseus hairy roots by overexpression of transcriptional factor ORCA2. Afr J Biotechnol 10(17):3260–3268

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Méndez-Zeel M, Monforte-González M, Miranda-Ham ML (1992) Serpentine accumulation during greening in normal and tumor tissues of Catharanthus roseus. J Plant Physiol 140(2):213–217

    Google Scholar 

  • Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68(14):1922–1931

    Google Scholar 

  • Moreno PR, Van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tiss Org Cult 42(1):1–25

    Article  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44(4):581–594

    Article  CAS  Google Scholar 

  • Oudin A, Mahroug S, Courdavault V, Hervouet N, Zelwer C, Rodríguez-Concepción M, St-Pierre B, Burlat V (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Mol Biol 65(1):13–30

    Article  CAS  Google Scholar 

  • Peebles CA, HughesEH SJV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metabol Eng 11(2):76–86

    Article  CAS  Google Scholar 

  • Richter I, Stolle K, Gröger D, Mothes K (1965) Überalkaloidbildung in gewebekulturen von Catharanthus roseus G. Don. Naturwissenschaften 52:305–306

    Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K, Boland W, De Luca V (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Nat Acad Sci USA 107(34):15287–15292

    Article  CAS  Google Scholar 

  • Salma U, Kundu S, Gantait S (2018) Conserving biodiversity of a potent anticancer plant, Catharanthus roseus through in vitro biotechnological intercessions: substantial progress and imminent prospects. In: Akhtar MS, Swamy MK (eds) Anticancer plants: natural products and biotechnological implements. Springer, Singapore, pp 83–107

    Google Scholar 

  • Scragg AH, Cresswell R, Ashton S, York A, Bond P, Fowler MW (1988) Growth and secondary product formation of a selected Catharanthus roseus cell line. Enz Microb Tech 10(9):532–536

    Article  CAS  Google Scholar 

  • Scragg AH, Ashton S, York A, Bond P, Stepan-Sarkissian G, Grey D (1990) Growth of Catharanthus roseus suspensions for maximum biomass and alkaloid accumulation. Enz Microb Tech 12(4):292–298

    Article  CAS  Google Scholar 

  • Schweizer F, Colinas M, Pollier J, Van Moerkercke A, Bossche RV, De Clercq R, Goossens A (2018) An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabol Eng 48(1):150–162

    Article  CAS  Google Scholar 

  • Senbagalakshmi P, Rao MV, Kumar TS (2017) In vitro studies, biosynthesis of secondary metabolites and pharmacological utility of Catharanthus roseus (L.) G. Don.: a review. In: Naeem M, Aftab T, Khan MMA (eds) Catharanthus roseus. Springer, Cham, Switzerland, pp 153–199

    Google Scholar 

  • Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L (2020) Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Sci 293 110408

    Google Scholar 

  • Sharma A, Amin D, Sankaranarayanan A, Arora R, Mathur AK (2020) Present status of Catharanthus roseus monoterpenoid indole alkaloids engineering in homo- and hetero-logous systems. Biotechnol Lett 42(1):11–23

    Article  CAS  Google Scholar 

  • St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11 (5):887–900

    Google Scholar 

  • Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, O’Connor SE (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22(3):336–341

    Article  CAS  Google Scholar 

  • Sun J, Zhao L, Shao Z, Shanks J, Peebles CA (2018) Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnol Bioeng 115(3):673–683

    Google Scholar 

  • Sun J, Peebles CAM (2016) Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 253:1255–1264

    Article  CAS  Google Scholar 

  • Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157(4):2081–2093

    Article  CAS  Google Scholar 

  • Van der Heijden R, Verpoorte R, Ten Hoopen HJ (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: A literature survey. Plant Cell Tiss Org Cult 18(3):231–280

    Google Scholar 

  • Van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297

    Article  Google Scholar 

  • Vázquez-Flota, F, St-Pierre B, De Luca V (2000) Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings. Phytochemistry 55(6):531–536

    Google Scholar 

  • Vázquez-Flota F, Loyola-Vargas VM (2003) In vitro Plant cell culture as the basis for the development of a research institute in Mexico: Centro de Investigación Científica de Yucatán. In vitro Cell Dev Biol-Plant 39(2):250–258

    Google Scholar 

  • Vázquez-Flota F, De Luca V, Carrillo-Pech M, Canto-Flick A, Miranda-Ham, ML (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Mol Biotechnol 22(1):1–8

    Google Scholar 

  • Vázquez-Flota F, E Hernández-Domínguez, ML Miranda-Ham, M Monforte-González (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31(4):591–595

    Google Scholar 

  • Vázquez-Flota FA, Miranda-Ham ML, Navarrete-Loeza MP, Monforte-González M (2020a) A protocol for the selection of spontaneous variants from established Catharanthus roseus hairy root cultures. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy root cultures based applications. Rhizosphere Biology. Springer, Singapore, pp 65–76

    Google Scholar 

  • Vázquez-Flota FA, Miranda-Ham ML, Coello-Coello J, Loyola-Vargas VM (2020b) Strategies for the optimization of culture conditions for increasing metabolite production through hairy root cultures: Monoterpene indole alkaloid production in Catharanthusroseushairy roots. In: Srivastava V, Mehrotra S, Mishra S (eds) Hairy Root Cultures Based Applications. Rhizosphere Biology. Springer, Singapore, pp 77–86

    Google Scholar 

  • Verma P, Mathur AK, Masood N, Luqman S, Shanker K (2013) Tryptophan over-producing cell suspensions of Catharanthus roseus (L) G. Don and their up-scaling in stirred tank bioreactor: detection of a phenolic compound with antioxidant potential. Protoplasma 250 (1):371–380

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1(1):13–25

    Article  CAS  Google Scholar 

  • Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29(8):887–894

    Article  CAS  Google Scholar 

  • White P (1945) Metastatic (graft) tumors of bacteria-free crown-galls on Vinca rosea. Am J Bot 32(5):237–241

    Article  Google Scholar 

  • Whitmer S, Canel C, Van der Heijden R, Verpoorte R (2003) Long-term instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tiss Org Cult 74(1):73–80

    Article  CAS  Google Scholar 

  • Zenk MH, El-Shagi H, Arens H, Stöckigt J, Weiler EW, Deus B (1977) Formation of the Indole Alkaloids Serpentine and Ajmalicine in Cell Suspension Cultures of Catharanthus roseus. In: Barz W, Reinhard E, Zenk MH (eds) Plant Tissue Culture and its Bio-technological application. Proceedings in life sciences. Springer, Berlin, Heidelberg, pp 27–44

    Google Scholar 

  • Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6(2–3):435–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by CONACYT (National Council of Science and Technology, México; Grant CB-2016 285887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe A. Vázquez-Flota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez-Flota, F.A. (2022). Alkaloid Synthesis in In Vitro Cultures of Catharanthus Roseus: Potential and Limitations. In: Kole, C. (eds) The Catharanthus Genome . Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-89269-2_5

Download citation

Publish with us

Policies and ethics