Skip to main content
Log in

The myosin converter domain modulates muscle performance

  • Brief Communication
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

Abstract

Myosin is the molecular motor that powers muscle contraction as a result of conformational changes during its mechanochemical cycle. We demonstrate that the converter, a compact structural domain that differs in sequence between Drosophila melanogaster myosin isoforms, dramatically influences the kinetic properties of myosin and muscle fibres. Transgenic replacement of the converter in the fast indirect flight muscle with the converter from an embryonic muscle slowed muscle kinetics, forcing a compensatory reduction in wing beat frequency to sustain flight. Conversely, replacing the embryonic converter with the flight muscle converter sped up muscle kinetics and increased maximum power twofold, compared to flight muscles expressing the embryonic myosin isoform. The substitutions also dramatically influenced in vitro actin sliding velocity, suggesting that the converter modulates a rate-limiting step preceding cross-bridge detachment. Our integrative analysis demonstrates that isoform-specific differences in the myosin converter allow different muscle types to meet their specific locomotion demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The location of alternative domains in Drosophila myosin and expression patterns of alternative converters.
Figure 2: Longitudinal and transverse sections of transgenic muscle fibres viewed by electron microscopy.
Figure 3: Flight muscle mechanical properties influenced by the converter.

Similar content being viewed by others

References

  1. Murphy, C. T. & Spudich, J. A. J. Muscle Res. Cell Motil. 21, 139–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Bernstein, S. I. & Milligan, R. A. J. Mol. Biol. 271, 1–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Swank, D. M., Wells, L., Kronert, W. A., Morrill, G. E. & Bernstein, S. I. Microsc. Res. Tech. 50, 430–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Lu, B. D., Allen, D. L., Leinwand, L. A. & Lyons, G. E. Dev. Biol. 216, 312–326 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. George, E. L., Ober, M. B. & Emerson, C. P. Jr Mol. Cell. Biol. 9, 2957–2974 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holmes, K. C. Curr. Biol. 7, R112–R118 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Dominguez, R., Freyzon, Y., Trybus, K. M. & Cohen, C. Cell 94, 559–571 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rayment, I., Holden, H. M., Sellers, J. R., Fananapazir, L. & Epstein, N. D. Proc. Natl Acad. Sci. USA 92, 3864–3868 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wells, L., Edwards, K. A. & Bernstein, S. I. EMBO J. 15, 4454–4459 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swank, D. M. et al. J. Biol. Chem. 276, 15117–15124 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Collier, V. L., Kronert, W. A., O'Donnell, P. T., Edwards, K. A. & Bernstein, S. I. Genes Dev. 4, 885–895 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Bagshaw, C. R. Muscle Contraction (Chapman and Hall, London, 1993).

  13. Josephson, R. K., Malamud, J. G. & Stokes, D. R. J. Exp. Biol. 203, 2713–2722 (2000).

    CAS  PubMed  Google Scholar 

  14. Molloy, J. E., Kyrtatas, V., Sparrow, J. C. & White, D. C. S. Nature 328, 429–451 (1987).

    Article  Google Scholar 

  15. Brenner, B. Proc. Natl Acad. Sci. USA 85, 3265–3269 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Regnier, M., Martyn, D. A. & Chase, P. B. Biophys. J. 71, 2786–2794 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huxley, A. F. Prog. Biophys. 7, 255–318 (1957).

    CAS  Google Scholar 

  18. Spudich, J. A. Nature 372, 515–518 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Rome, L. C. et al. Proc. Natl Acad. Sci. USA 96, 5826–5831 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Houdusse, A. & Sweeney, H. L. Curr. Opin. Struct. Biol. 11, 182–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Geeves, M. A., Perreault-Micale, C. & Coluccio, L. M. J. Biol. Chem. 275, 21624–21630 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rosenfeld, S. S. et al. J. Biol. Chem. 275, 25418–25426 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Dickinson, M. H. et al. Biophys. J. 73, 3122–3134 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lehmann, F. O. & Dickinson, M. H. J. Exp. Biol. 200, 1133–1143 (1997).

    CAS  PubMed  Google Scholar 

  25. Curtsinger, J. W. & Laurie-Ahlberg, C. C. Genetics 98, 549–564 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cripps, R. M. et al. J. Cell Biol. 126, 689–699 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Reedy, M. C. & Beall, C. Dev. Biol. 160, 443–465 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Hyatt, C. J. & Maughan, D. W. Biophys. J. 67, 1149–1154 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drummond, D. R., Hennessey, E. S. & Sparrow, J. C. Mol. Gen. Genet. 226, 70–80 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Rayment, I. et al. Science 261, 50–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Huxley, A. F. & Simmons, R. M. Cold Spring Harb. Symp. Quant. Biol. 37, 669–680 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Milligan for the myosin S1 structure shown in Fig. 1, D. Warshaw, S. Lowey, K. Trybus, J. Moore and K. Littlefield for helpful discussions, and W. Barnes, W. Kronert and G. Manipon for technical assistance. We also appreciate the valuable suggestions of an anonymous reviewer. This work was supported by research grants from the National Institutes of Health (NIH) to S.I.B. (GM 32443) and D.W.M., by NIH Minority Biomedical Research Support fund (GM 58906) to F.S. and by postdoctoral fellowships to D.M.S. from the NIH and the American Heart Association, Western States Affiliate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Swank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swank, D., Knowles, A., Suggs, J. et al. The myosin converter domain modulates muscle performance. Nat Cell Biol 4, 312–317 (2002). https://doi.org/10.1038/ncb776

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb776

  • Springer Nature Limited

This article is cited by

Navigation