Skip to main content

Advertisement

Log in

Folate fortification of rice by metabolic engineering

  • Brief Communication
  • Published:

From Nature Biotechnology

View current issue Submit your manuscript

Abstract

Rice, the world's major staple crop, is a poor source of essential micronutrients, including folates (vitamin B9). We report folate biofortification of rice seeds achieved by overexpressing two Arabidopsis thaliana genes of the pterin and para-aminobenzoate branches of the folate biosynthetic pathway from a single locus. We obtained a maximal enhancement as high as 100 times above wild type, with 100 g of polished raw grains containing up to four times the adult daily folate requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Engineering folate biosynthesis.
Figure 2: Analysis of PABA, pterins and folate content in seeds of transgenic rice plants.

Similar content being viewed by others

References

  1. Geisel, J. J. Perinat. Neonatal Nurs. 17, 268–279 (2003).

    Article  Google Scholar 

  2. Li, G.M., Presnell, S.R. & Gu, L.Y. J. Nutr. Biochem. 14, 568–575 (2003).

    Article  CAS  Google Scholar 

  3. Berry, R.J. & Li, Z. Epidemiology 13, 114–116 (2002).

    Article  Google Scholar 

  4. Storozhenko, S. et al. Trends Food Sci. Technol. 16, 271–281 (2005).

    Article  CAS  Google Scholar 

  5. Diaz de la Garza, R.I., Gregory, J.F., III & Hanson, A.D. Proc. Natl. Acad. Sci. USA 104, 4218–4222 (2007).

    Article  CAS  Google Scholar 

  6. de la Garza, R. et al. Proc. Natl. Acad. Sci. USA 101, 13720–13725 (2004).

    Article  Google Scholar 

  7. Sohta, Y., Ohta, T. & Masada, M. Biosci. Biotechnol. Biochem. 61, 1081–1085 (1997).

    Article  CAS  Google Scholar 

  8. Nakase, M. et al. Gene 170, 223–226 (1996).

    Article  CAS  Google Scholar 

  9. Takaiwa, F., Oono, K., Wing, D. & Kato, A. Plant Mol. Biol. 17, 875–885 (1991).

    Article  CAS  Google Scholar 

  10. Zhang, G.F. et al. Rapid Commun Mass Spectrom. 19, 963–969 (2005).

    Article  CAS  Google Scholar 

  11. Patarca, R. J. Environ. Pathol. Toxicol. Oncol. 22, 117–127 (2003).

    CAS  PubMed  Google Scholar 

  12. Oakley, G.P. Teratology 66, 44–54 (2002).

    Article  CAS  Google Scholar 

  13. Gutstein, S., Bernstein, L.H., Levy, L. & Wagner, G. Dig. Dis. 18, 142–146 (1973).

    Article  CAS  Google Scholar 

  14. Melse-Boonstra, A. et al. Am. J. Clin. Nutr. 79, 424–429 (2004).

    Article  CAS  Google Scholar 

  15. Sauberlich, H.E. et al. Am. J. Clin. Nutr. 46, 1016–1028 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Ghent University (Bijzonder Onderzoeksfonds, GOA 1251204) to D.V.D.S. and W.L.

Author information

Authors and Affiliations

Authors

Contributions

S.S., experimental design, molecular cloning and analysis of transgenic lines; M.V., rice transformation, plant culture and genomic DNA isolation; O.N. and D.B., expression analysis; V.D.B., G.-F.Z. and W.L., development and application of chromatographic analyses; D.V.D.S., experimental design, initiation and coordination of the research project.

Corresponding author

Correspondence to Dominique Van Der Straeten.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–4, Supplementary Methods, Supplementary Note (PDF 760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storozhenko, S., De Brouwer, V., Volckaert, M. et al. Folate fortification of rice by metabolic engineering. Nat Biotechnol 25, 1277–1279 (2007). https://doi.org/10.1038/nbt1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1351

  • Springer Nature America, Inc.

Navigation