Skip to main content

Rice Genetic Engineering for Increased Amino Acid and Vitamin Contents

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Plants are the major source of nutrients in the human diet. However, staple cereal crops lack certain amino acids and vitamins, and its nutritious content is not enough to provide a balanced diet. Rice is the most widely preferred food crop; thus, it is necessary that we enhance its nutritional content. This can be achieved through the process of biofortification using principles of genetic engineering. Rice is mainly known to be deficient in threonine and lysine. Hence, there has been great interest in using practical concepts of genetic engineering to increase the amino acid content of rice. Several studies are being carried out on overexpression of aminotransferases in order to obtain significant levels of essential amino acids. Efforts have also been taken to enhance the vitamin content of rice. Golden rice rich in vitamin A is one of the outcomes of such strategies. Similarly, transgenic approaches for the expression of enzymes responsible for synthesis of vitamin E have increased the levels considerably. Thus, genetic engineering and transgenic approaches can prove to be a solution to malnutrition, but further comprehensive study on metabolic pathways and its manipulation is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avraham T, Badani H, Galili S, Amir R (2004) Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnol J 3:71–79

    Google Scholar 

  • Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci 4:15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R (2002) Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132(3):506S–510S. https://doi.org/10.1093/jn/132.3.506S

    Article  PubMed  Google Scholar 

  • Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, De Steur H (2015) Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol 33:1076–1078. https://doi.org/10.1038/nbt.3358

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from Harvest Plus, 2003 through 2016. Global Food Sec 12:49–58

    Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li CJ, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bu Y, Sun B, Zhou A, Zhang X, Takano T, Liu S (2016) Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana. BMC Biotechnol 16:69

    PubMed  PubMed Central  Google Scholar 

  • Burkhardt PK, Beyer P, Wuenn J, Kloeti A, Armstrong GA, Schledz M (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078. https://doi.org/10.1046/j.1365-313X.1997.11051071.x

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15:148–154

    CAS  PubMed  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100:3525–3530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Transgenic Res 15:655–665

    CAS  PubMed  Google Scholar 

  • Cho ES, Anderson HL, Wixon RI, Hanson KC, Krause GF (1984) Long-term effects of low histidine intake on men. J Nutr 114:369–384

    CAS  PubMed  Google Scholar 

  • Collakova E, DellaPenna D (2003) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Combs CF Jr, McClung JP (2017) The vitamins − fundamental aspects in nutrition and health, 5th edn. Academic Press, Chennai

    Google Scholar 

  • Crowell EF, McGrath JM, Douches DS (2007) Accumulation of vitamin E in potato (Solanum tuberosum) tubers. Transgenic Res 17:205–217

    PubMed  Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J (2003) Bioengineered ‘golden’ Indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90. https://doi.org/10.1046/j.1467-7652.2003.00015.x

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ (2012) Arsenic affects essential and non essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. Environ Int 46:16–22

    CAS  PubMed  Google Scholar 

  • Edem DO (2009) Vitamin A: a review. Asian J Clin Nutr 1:65–82

    Google Scholar 

  • FAO (2009) More people than ever are victims of hunger. http://www.fao.org/fileadmin/user_upload/newsroom/docs/Press%20release%20june-en.pdf

  • FAO, IFAD, WFP (2015) The state of food insecurity in the world 2015. FAO, Rome

    Google Scholar 

  • Galili G (1995) Regulation of lysine and threonine synthesis. Plant Cell 7:899–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnol J 11:211–222

    CAS  PubMed  Google Scholar 

  • Galili G, HÓ§fgen R (2002) Metabolic engineering of amino acids and storage proteins in plants. Metab Eng 4:3–11

    CAS  PubMed  Google Scholar 

  • Gallardo F, Fu J, Jing ZP, Kirby EG, Cánovas FM (2003) Genetic modification of amino acid metabolism in woody plants. Plant Physiol Biochem 41:587–594

    CAS  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy and transgenic approaches are improving lives of millions of people around the world. Front Nut 5:12. https://doi.org/10.3389/fnut.2018.00012

    Article  CAS  Google Scholar 

  • Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SMD, Henry CS, de Crécy-Lagard V, Hanson AD (2012) Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J Exp Bot 63:5379–5395

    CAS  PubMed  Google Scholar 

  • Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180

    CAS  PubMed  Google Scholar 

  • Gorelova V, Ambach L, Rébeillé F, Stove C, Van Der Straeten D (2017) Folates in plants: research advances and progress in crop biofortification. Front Chem 5:21. https://doi.org/10.3389/fchem.2017.00021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Google Scholar 

  • Hagan ND, Upadhyaya N, Tabe LM, Higgins TJV (2003) The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein. Plant J 34:1–11

    CAS  PubMed  Google Scholar 

  • Harish MC, Dachinamoorty P, Balamurugan S, Bala Murugan S, Sathishkumar R (2013) Overexpression of homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) enhances α-tocopherol content in transgenic tobacco. Biol Plant 57:395–400

    CAS  Google Scholar 

  • Hirschberg J (1999) Production of high-value compounds: carotenoids and vitamin E. Curr Opin Biotechnol 10:186–191

    CAS  PubMed  Google Scholar 

  • Huang Z, Liu Y, Qi G, Brand D, Zheng SG (2018) Role of vitamin A in the immune system. J Clin Med 7(9):258. https://doi.org/10.3390/jcm7090258

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang J, Chen Z, Ban L, Wu Y, Huang J, Chu J, Fang S, Wang Z, Gao H, Wang X (2017a) P-hydroxyphenylpyruvate dioxygenase from Medicago sativa is involved in vitamin E biosynthesis and abscisic acid mediated seed germation. Sci Rep 7:40625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Wang W, Lian T, Zhang C (2017b) Manipulation of metabolic pathways to develop vitamin-enriched crops for human health. Front Plant Sci 8:937. https://doi.org/10.3389/fpls.2017.00937

    Article  PubMed  PubMed Central  Google Scholar 

  • Juan PA, Salvatore D (2006) Free amino acids in the nervous system of the amphioxus Branchiostoma lanceolatum. A comparative study. Int J Biol Sci 2:87–92

    Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, Utsumi S (1999a) Accumulation of soybean glycinin and its assembly with the glutelins in rice. Plant Physiol 120:1063–1073. https://doi.org/10.1104/pp.120.4.1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsube T, Kurisaka N, Ogawa M, Maruyama N, Ohtsuka R, Utsumi S, Takaiwa F (1999b) Accumulation of soybean glycinine and its assembly with the glutelins in rice. Plant Physiol 120:1063–1073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawagishi-Kobayashi M, Yabe N, Tsuchiya M, Harada S, Kobayashi T, Komeda Y, Kyo W (2005) Rice OASA1D, a mutant anthranilate synthase α subunit gene, is an effective selectable marker for transformation of Arabidopsis thaliana. Plant Biotechnol 22(4):271–276

    CAS  Google Scholar 

  • Kawakatsu T, Takaiwa F (2018) Rice proteins and essential amino acids. In: Bao J (ed) Rice: chemistry and technology, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kawakatsu T, Yamamoto MP, Hirose S, Yano M, Takaiwa F (2008) Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot 59:4233–4245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le DT, Chu HD, Le NG (2016) Improving nutritional quality of plant proteins through genetic engineering. Curr Genomics 17:220–229

    PubMed  PubMed Central  Google Scholar 

  • Lee SI, Kim HU, Lee YH, Suh SC, Lim YP, Lee HY (2001a) Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed 8:75–84. https://doi.org/10.1023/A:1011977219926

    Article  CAS  Google Scholar 

  • Lee SI, Kim HU, Lee Y-H, Suh S-C, Lim YP, Lee H-Y, Kim H-I (2001b) Constitutive and seed-specific expression of a maize lysine-feedback-insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed 8:75–84

    CAS  Google Scholar 

  • Lee TTT, Wang MMC, Hou RCW, Chen L-J, Su R-C, Wang C-S, Tzen JTC (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of Sesame 2S Albumin. Biosci Biotechnol Biochem 67:1699–1705

    PubMed  Google Scholar 

  • Li L, van Eck J (2007) Metabolic engineering of carotenoid accumulation by creating a metabolic sink. Transgenic Res 16:581–585

    PubMed  Google Scholar 

  • Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B, Chevone BI, Mendes P, Nessler CL, Lorence A (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stress. In Vitro Cell Dev Biol-Plant 49:643–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wang L, Yang J, Zhang W, Fan Y (2008) Isolation and characterization of 2-methyl-6-phytyl-1,4-benzoquinol methyltransferase gene promoter from Arabidopsis thaliana. Chin J Biotechnol 24:33–39

    Google Scholar 

  • Liu X, Zhang C, Wang X, Liu Q, Yuan D, Pan G, Sun SSM, Tu J (2016) Development of high-lysine rice via endosperm-specific expression of a foreign lysine rich protein gene. BMC Plant Biol 147(16):1–13

    Google Scholar 

  • Long X, Liu Q, Chan M, Wang Q, Sun SSM (2013) Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnol J 11(4):490–501. https://doi.org/10.1111/pbi.12037

    Article  CAS  PubMed  Google Scholar 

  • Mauro G, Pietro C (1997) Correlation between amino acid induced changes in energy expenditure and protein metabolism in humans. Nutrition 13:309–312

    Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    CAS  PubMed  Google Scholar 

  • Mohan M, Antony T, Malik S, Mathur M (1988) Rice powder oral rehydration solution as an alternative to glucose electrolyte solution. Indian J Med Res 87:234–239

    CAS  PubMed  Google Scholar 

  • Nguyen HC, Hoefgen R, Hesse H (2012) Improving the nutritive value of rice seeds: elevation of cysteine and methionine contents in rice plants by ectopic expression of a bacterial serine acetyltransferase. J Exp Bot 63:5991–6001

    CAS  PubMed  Google Scholar 

  • Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T (2001) Mapping of QTLs associated with cystolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:567–575

    Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487. https://doi.org/10.1038/nbt1082

    Article  CAS  PubMed  Google Scholar 

  • Roje S (2007) Vitamin B biosynthesis in plants. Phytochemistry 68(14):1904–1921

    CAS  PubMed  Google Scholar 

  • Ross AC, Gardner EM (1994) The function of vitamin A in cellular growth and differentiation, and its roles during pregnancy and lactation. Adv Exp Med Biol 352:187–200

    CAS  PubMed  Google Scholar 

  • Sautter C, Poletti S, Zhang P, Gruissem W (2006) Biofortification of essential nutritional compounds and trance elements in rice and cassava. Proc Nutr Soc 65:153–159

    CAS  PubMed  Google Scholar 

  • Shimaoka T, Yokota A, Miyake C (2000) Purification and characterization of chloroplast dehydroascorbate reductase from spinach leaves. Plant Cell Physiol 41:1110–1118

    CAS  PubMed  Google Scholar 

  • Sindhu AS, Zheng Z, Murai N (1997) The pea seed storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm. Plant Sci 130:189–196. https://doi.org/10.1016/S0168-9452(97)00219-7

    Article  Google Scholar 

  • Smirnoff N (2011) Vitamin C: the metabolism and functions of ascorbic acid and plants. Adv Bot Res 59:109–177

    Google Scholar 

  • Srivastava RK (2018) Application of agricultural biotechnology for high nutritious food products. Ann Agric Crop Sci 3(2):1–6

    Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277–1279. https://doi.org/10.1038/nbt1351

    Article  CAS  PubMed  Google Scholar 

  • Sun SSM, Liu Q (2004) Transgenic approaches to improve the nutritional quality. In Vitro Cell Dev Biol–Plant 40:155–162

    CAS  Google Scholar 

  • Tang G, Qin J, Dolnikowski GG, Russell RM, Grusak GA (2009) Golden rice is an effective source of vitamin A. Am J Clin Nutr 89:1776–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tozawa Y, Hasegawa H, Terakawa T, Wakasa K (2001) Characterization of rice anthranilate synthase α-subunit genes OASA1 and OASA2. Tryptophan accumulation in transgenic rice expressing a feed-insensitive mutant of OASA1. Plant Physiol 126:1493–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy SK, Dash M, Behera SK, Ithape DM, Maharana M (2017) Nutrient rich quality rice – a journey to healthy life. Adv Plant Agric Res 7(5):364–367

    Google Scholar 

  • Ufaz S, Galili G (2008) Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol 147:954–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urano J, Nakagawa T, Maki Y, Masumura T, Tanaka K, Murata N, Ushimaru T (2000) Molecular cloning and characterization of a rice dehydroascorbate reductase. FEBS Lett 466:107–111

    CAS  PubMed  Google Scholar 

  • Wakasa K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069–3078. https://doi.org/10.1093/jxb/erl068

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Galili G (2016) Transgenic high-lysine rice – a realistic solution to malnutrition? J Exp Bot 67:4009–4011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhong M, Li X, Yuan D, Xu Y, Liu H, He Y, Luo L, Zhang Q (2008) The QTL controlling amino acid content in grains of rice (Oryza sativa L.) are co-localized with the regions involved in the amino acid metabolism pathway. Mol Breed 21:127–137

    CAS  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    CAS  PubMed  Google Scholar 

  • Wu XR, Chen ZH, Folk WR (2003) Enrichment of cereal protein lysine content by altered tRNA(lys) coding during protein synthesis. Plant Biotechnol J 1:187–194

    CAS  PubMed  Google Scholar 

  • Xu JH, Messing J (2009) Amplification of prolamin storage protein genes in different subfamilies of the Poaceae. Theor Appl Genet 119:1397–1412

    CAS  PubMed  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    CAS  PubMed  Google Scholar 

  • Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, Cahoon EB (2011) Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. The Plant J 65:206–217

    CAS  PubMed  Google Scholar 

  • Yang Q-Q, Zhang C-Q, Chan M-L, Zhao D-S, Chen J-Z, Wang Q, Li Q-F, Yu H-X, Gu M-H, Sun SS-M, Liu Q-Q (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4285–4296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    CAS  PubMed  Google Scholar 

  • Zhang C, Cahoon RE, Hunter SC, Chen M, Han J, Cahoon EB (2012) Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. Plant J 73:628–639

    PubMed  Google Scholar 

  • Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness 5:116–123

    Google Scholar 

  • Zheng A, Sumi K, Tanaka K, Murai N (1995) The bean seed storage protein β-phaseolin is synthesized, processed and accumulated in the vacuolar type-II protein bodies of transgenic rice endosperm. Plant Physiol 109:777–786. https://doi.org/10.1104/pp109.3.777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong M, Wang LQ, Yuan DJ, Luo LJ, Xu CG, He YQ (2011) Identification of QTL affecting protein and amino acid contents in rice. Rice Sci 18:187–195

    Google Scholar 

  • Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspirate aminotransferase gene in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390

    CAS  PubMed  Google Scholar 

  • Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thangadurai, D., Soundar Raju, C., Sangeetha, J., Hospet, R., Pandhari, R. (2020). Rice Genetic Engineering for Increased Amino Acid and Vitamin Contents. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_29

Download citation

Publish with us

Policies and ethics