Skip to main content
Log in

Formation and propagation of matter-wave soliton trains

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Attraction between the atoms of a Bose–Einstein condensate renders it unstable to collapse, although a condensate with a limited number of atoms1 can be stabilized2 by confinement in an atom trap. However, beyond this number the condensate collapses3,4,5. Condensates constrained to one-dimensional motion with attractive interactions are predicted to form stable solitons, in which the attractive forces exactly compensate for wave-packet dispersion1. Here we report the formation of bright solitons of 7Li atoms in a quasi-one-dimensional optical trap, by magnetically tuning the interactions in a stable Bose–Einstein condensate from repulsive to attractive. The solitons are set in motion by offsetting the optical potential, and are observed to propagate in the potential for many oscillatory cycles without spreading. We observe a soliton train, containing many solitons; repulsive interactions between neighbouring solitons are inferred from their motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Feshbach resonance.
Figure 2: Measured rate of inelastic collisional loss of atoms near the Feshbach resonance.
Figure 3: Comparison of the propagation of repulsive condensates with atomic solitons.
Figure 4: Repulsive interactions between solitons.

Similar content being viewed by others

References

  1. Ruprecht, P. A., Holland, M. J., Burnett, K. & Edwards, M. Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704–4711 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Sackett, C. A., Gerton, J. M., Welling, M. & Hulet, R. G. Measurements of collective collapse in a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 82, 876–879 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Gerton, J. M., Strekalov, D., Prodan, I. & Hulet, R. G. Direct observation of growth and collapse of a Bose–Einstein condensate with attractive interactions. Nature 408, 692–695 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 286, 1518–1523 (1999)

    Article  CAS  Google Scholar 

  7. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Burger, S., Bongs, K., Dettmer, S., Ertmer, W. & Sengstock, K. Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Denschlag, J. et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–100 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Anderson, B. P. et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86, 2926–2929 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Pérez-García, V., Michinel, H. & Herrero, H. Bose-Einstein solitons in highly asymmetric traps. Phys. Rev. A 57, 3837–3842 (1998)

    Article  ADS  Google Scholar 

  12. Muryshev, A. E., van Linden van den Heuvell, H. B. & Shlyapnikov, G. V. Stability of standing matter waves in a trap. Phys. Rev. A 60, R2665–R2668 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Carr, L. D., Leung, M. A. & Reinhardt, W. P. Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond. J. Phys. B 33, 3983–4001 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Kivshar, Y. S., Alexander, T. J. & Turitsyn, S. K. Nonlinear modes of a macroscopic quantum oscillator. Phys. Lett. A 278, 225–230 (2001)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Schreck, F. et al. Quasipure Bose-Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett. 87, 080403-1–080403-4 (2001)

    Article  ADS  Google Scholar 

  16. Görlitz, A. et al. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett. 87, 130402-1–130402-4 (2001)

    Article  ADS  Google Scholar 

  17. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. & Hulet, R. G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001)

    Article  ADS  CAS  Google Scholar 

  18. McAlexander, W. I. Collisional Interactions in an Ultracold Lithium Gas. Thesis, Rice Univ. (2000)

  19. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Roberts, J. L., Claussen, N. R., Cornish, S. L. & Wieman, C. E. Magnetic field dependence of ultracold collisions near a Feshbach resonance. Phys. Rev. Lett. 85, 728–731 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–65 (1972)

    ADS  MathSciNet  Google Scholar 

  23. Carr, L. D., Clark, C. W. & Reinhardt, W. P. Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity. Phys. Rev. A 62, 063611-1–063611-10 (2000)

    ADS  Google Scholar 

  24. Tai, K., Hasegawa, A. & Tomita, A. Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)

    Article  ADS  CAS  Google Scholar 

  25. Gordon, J. P. Interaction forces among solitons in optical fibers. Opt. Lett. 8, 596–598 (1983)

    Article  ADS  CAS  Google Scholar 

  26. Hasegawa, A. Optical Solitons in Fibers (Springer, New York, 1990)

    Book  Google Scholar 

  27. Lenz, G., Meystre, P. & Wright, E. M. Nonlinear atom optics. Phys. Rev. Lett. 71, 3271–3274 (1993)

    Article  ADS  CAS  Google Scholar 

  28. Kasevich, M. A. Atom interferometry with Bose-Einstein condensed atoms. C.R. Acad. Sci. IV 2, 497–507 (2001)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank W. I. McAlexander for providing the coupled channels calculation, B. Luey for making the magnetic coils, and T. Killian and H. Stoof for discussions. This work was supported by the US National Science Foundation, NASA, the Office of Naval Research and the Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall G. Hulet.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strecker, K., Partridge, G., Truscott, A. et al. Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002). https://doi.org/10.1038/nature747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature747

  • Springer Nature Limited

This article is cited by

Navigation