Skip to main content
Log in

Interaction-based quantum metrology showing scaling beyond the Heisenberg limit

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement1. An interferometer using N independent particles to measure a parameter can achieve at best the standard quantum limit of sensitivity, δ ∝ N−1/2. However, using N entangled particles and exotic states2, such an interferometer3 can in principle achieve the Heisenberg limit, δ ∝ N−1. Recent theoretical work4,5,6 has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δ ∝ Nk with appropriate entangled states and δ ∝ N−(k−1/2) even without entanglement7. Here we demonstrate ‘super-Heisenberg’ scaling of δ ∝ N−3/2 in a nonlinear, non-destructive8,9 measurement of the magnetization10,11 of an atomic ensemble12. We use fast optical nonlinearities to generate a pairwise photon–photon interaction13 (corresponding to k = 2) while preserving quantum-noise-limited performance7,14. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory13. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Atom–light interface.
Figure 2: Calibration of nonlinear Faraday rotation.
Figure 3: Super-Heisenberg scaling.

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007)

    Article  ADS  Google Scholar 

  5. Choi, S. & Sundaram, B. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit. Phys. Rev. A 77, 053613 (2008)

    Article  ADS  Google Scholar 

  6. Roy, S. M. & Braunstein, S. L. Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Boixo, S. et al. Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008)

    Article  ADS  Google Scholar 

  8. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling. Phys. Rev. Lett. 105, 093602 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Kominis, I., Kornack, T., Allred, J. & Romalis, M. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Napolitano, M. & Mitchell, M. W. Nonlinear metrology with a quantum interface. N. J. Phys. 12, 093016 (2010)

    Article  Google Scholar 

  14. Fleischhauer, M., Matsko, A. B. & Scully, M. O. Quantum limit of optical magnetometry in the presence of ac Stark shifts. Phys. Rev. A 62, 013808 (2000)

    Article  ADS  Google Scholar 

  15. Scully, M. O., Englert, B. G. & Walther, H. Quantum optical tests of complementarity. Nature 351, 111–116 (1991)

    Article  ADS  Google Scholar 

  16. Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Wolfgramm, F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010)

    Article  ADS  Google Scholar 

  18. Beltrán, J. & Luis, A. Breaking the Heisenberg limit with inefficient detectors. Phys. Rev. A 72, 045801 (2005)

    Article  ADS  Google Scholar 

  19. Woolley, M. J., Milburn, G. J. & Caves, C. M. Nonlinear quantum metrology using coupled nanomechanical resonators. N. J. Phys. 10, 125018 (2008)

    Article  Google Scholar 

  20. Chase, B. A., Baragiola, B. Q., Partner, H. L., Black, B. D. & Geremia, J. M. Magnetometry via a double-pass continuous quantum measurement of atomic spin. Phys. Rev. A 79, 062107 (2009)

    Article  ADS  Google Scholar 

  21. Negretti, A., Henkel, C. & Mølmer, K. Quantum-limited position measurements of a dark matter-wave soliton. Phys. Rev. A 77, 043606 (2008)

    Article  ADS  Google Scholar 

  22. Boixo, S. et al. Quantum-limited metrology and Bose-Einstein condensates. Phys. Rev. A 80, 032103 (2009)

    Article  ADS  Google Scholar 

  23. Kubasik, M. et al. Polarization-based light-atom quantum interface with an all-optical trap. Phys. Rev. A 79, 043815 (2009)

    Article  ADS  Google Scholar 

  24. Braginskii, V. B. & Vorontsov, Y. I. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Sov. Phys. Usp. 17, 644 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. H. Deutsch and F. Illuminati for comments. We thank C. M. Caves and A. D. Codorníu for inspiration. This work was supported by the Spanish Ministry of Science and Innovation through the Consolider-Ingenio 2010 project QOIT, the Ingenio-Explora project OCHO (ref. FIS2009-07676-E/FIS) and project ILUMA (ref. FIS2008-01051), by the Marie-Curie RTN EMALI, and by Fundacio CELLEX Barcelona.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work presented in this paper.

Corresponding author

Correspondence to M. Napolitano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains a Supplementary Discussion and Data, Supplementary Figures 1-4 with legends and additional references. (PDF 378 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napolitano, M., Koschorreck, M., Dubost, B. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011). https://doi.org/10.1038/nature09778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09778

  • Springer Nature Limited

This article is cited by

Navigation