Skip to main content
Log in

Interaction between liquid water and hydroxide revealed by core-hole de-excitation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The hydroxide ion plays an important role in many chemical and biochemical processes in aqueous solution1. But our molecular-level understanding of its unusual and fast transport in water, and of the solvation patterns that allow fast transport, is far from complete. One proposal seeks to explain the properties and behaviour of the hydroxide ion by essentially regarding it as a water molecule that is missing a proton2, and by inferring transport mechanisms and hydration structures from those of the excess proton. A competing proposal invokes instead unique and interchanging hydroxide hydration complexes, particularly the hypercoordinated OH-(H2O)4 species and tri-coordinated OH-(H2O)3 that can form a transient hydrogen bond between the H atom of the OH- and a neighbouring water molecule3,4,5. Here we report measurements of core-level photoelectron emission and intermolecular Coulombic decay6,7,8 for an aqueous hydroxide solution, which show that the hydrated hydroxide ion is capable of transiently donating a hydrogen bond to surrounding water molecules. In agreement with recent experimental studies of hydroxide solutions9,10,11,12, our finding thus supports the notion that the hydration structure of the hydroxide ion cannot be inferred from that of the hydrated excess proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Photoelectron, resonant Auger-electron and intermolecular Coulombic decay spectra of 4 molal NaOH aqueous solution.
Figure 2: Energy-level diagram of OH - (aq) and H 2 O(aq).

Similar content being viewed by others

References

  1. Hynes, J. T., Klinman, J. P., Limbach, H.-H. & Schowen, R. L. E. Hydrogen-Transfer Reactions Ch. 21 (Wiley, 2007)

    Google Scholar 

  2. Asthagiri, D., Pratt, L. R., Kress, J. D. & Gomez, M. A. Hydration and mobility of HO-(aq). Proc. Natl Acad. Sci. USA 101, 7229–7233 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Chandra, A., Tuckerman, M. E. & Marx, D. Connecting solvation shell structure to proton transport kinetics in hydrogen-bonded networks via population correlation functions. Phys. Rev. Lett. 99, 145901 (2007)

    Article  ADS  Google Scholar 

  4. Tuckerman, M. E., Chandra, A. & Marx, D. Structure and dynamics of OH-(aq). Acc. Chem. Res. 39, 151–158 (2006)

    Article  CAS  Google Scholar 

  5. Tuckerman, M. E., Marx, D. & Parrinello, M. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417, 925–929 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Averbukh, V., Müller, I. B. & Cederbaum, L. S. Mechanism of interatomic Coulombic decay in clusters. Phys. Rev. Lett. 93, 263002 (2004)

    Article  ADS  Google Scholar 

  8. Müller, I. B. & Cederbaum, L. S. Ionization and double ionization of small water clusters. J. Chem. Phys. 125, 204305 (2006)

    Article  ADS  Google Scholar 

  9. Cappa, C. D., Smith, J. D., Messer, B. M., Cohen, R. C. & Saykally, R. J. Nature of the aqueous hydroxide ion probed by X-ray absorption spectroscopy. J. Phys. Chem. A 111, 4776–4785 (2007)

    Article  CAS  Google Scholar 

  10. Botti, A., Bruni, F., Imberti, S., Ricci, M. A. & Soper, A. K. Ions in water: The microscopic structure of concentrated NaOH solutions. J. Chem. Phys. 120, 10154–10162 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Imberti, S. et al. Ions in water: The microscopic structure of concentrated hydroxide solutions. J. Chem. Phys. 122, 194509 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Megyes, T. et al. The structure of aqueous sodium hydroxide solutions: A combined solution X-ray diffraction and simulation study. J. Chem. Phys. 128, 044501–044512 (2008)

    Article  ADS  Google Scholar 

  13. Winter, B. & Faubel, M. Photoemission from liquid aqueous solutions. Chem. Rev. 106, 1176–1211 (2006)

    Article  CAS  Google Scholar 

  14. Winter, B., Hergenhahn, U., Faubel, M., Björneholm, O. & Hertel, I. V. Hydrogen bonding in liquid water probed by resonant Auger-electron spectroscopy. J. Chem. Phys. 127, 094501 (2007)

    Article  ADS  Google Scholar 

  15. Winter, B. et al. Electron dynamics in charge-transfer-to-solvent states of aqueous chloride revealed by Cl- 2p resonant Auger-electron spectroscopy. J. Am. Chem. Soc. 130, 7130–7138 (2008)

    Article  CAS  Google Scholar 

  16. Barth, S. et al. Interface identification by non-local autoionization transitions. Phys. Chem. Chem. Phys. 8, 3218–3222 (2006)

    Article  CAS  Google Scholar 

  17. Chen, X. & Bradforth, S. E. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59, 203–231 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Blandamer, M. J. & Fox, M. F. Theory and applications of charge-transfer-to-solvent spectra. Chem. Rev. 70, 59–93 (1970)

    Article  CAS  Google Scholar 

  19. Crowell, R. A. et al. Ultrafast dynamics for electron photodetachment from aqueous hydroxide. J. Chem. Phys. 120, 11712–11725 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Fox, M. & McIntyre, R. Far ultraviolet solution spectroscopy of hydroxide. Faraday Discuss. 64, 167–172 (1977)

    Article  Google Scholar 

  21. Agmon, N. Mechanism of hydroxide mobility. Chem. Phys. Lett. 319, 247–252 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Smiechowski, M. & Stangret, J. Hydroxide ion hydration in aqueous solutions. J. Phys. Chem. A 111, 2889–2897 (2007)

    Article  CAS  Google Scholar 

  23. Vacha, R., Buch, V., Milet, A., Devlin, J. P. & Jungwirth, P. Autoionization at the surface of neat water: Is the top layer pH neutral, basic, or acidic? Phys. Chem. Chem. Phys. 9, 4736–4747 (2007)

    Article  CAS  Google Scholar 

  24. Beattie, J. K. Comment on Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? by R. Vacha, V. Buch, A. Milet, J. P. Devlin and P. Jungwirth, Phys. Chem. Chem. Phys., 2007, 9, 4736 Phys. Chem. Chem. Phys. 10, 330–331 (2008)

    Article  Google Scholar 

  25. Vacha, R., Buch, V., Milet, A., Devlin, J. P. & Jungwirth, P. Response to Comment on Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic? by J. K. Beattie, Phys. Chem. Chem. Phys., 2007, 9, 10.1039/b713702h Phys. Chem. Chem. Phys. 10, 332–333 (2008)

    Article  CAS  Google Scholar 

  26. Petersen, P. B. & Saykally, R. J. Evidence for an enhanced hydronium concentration at the liquid water surface. J. Phys. Chem. B 109, 7976–7980 (2005)

    Article  CAS  Google Scholar 

  27. Robertson, W. H., Diken, E. G., Price, E. A., Shin, J. W. & Johnson, M. A. Spectroscopic determination of the OH- solvation shell in the OH-(H2O) n clusters. Science 299, 1367–1372 (2003)

    Article  CAS  Google Scholar 

  28. Cappa, C. D. et al. Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109, 7046–7052 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the BESSY staff for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Winter.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-3 with Legends and additional references. (PDF 203 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aziz, E., Ottosson, N., Faubel, M. et al. Interaction between liquid water and hydroxide revealed by core-hole de-excitation. Nature 455, 89–91 (2008). https://doi.org/10.1038/nature07252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07252

  • Springer Nature Limited

This article is cited by

Navigation