Skip to main content
Log in

Methane storms on Saturn's moon Titan

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The presence of dry fluvial river channels and the intense cloud activity in the south pole of Titan over the past few years1,2,3 suggest the presence of methane rain. The nitrogen atmosphere of Titan therefore appears to support a methane meteorological cycle that sculptures the surface and controls its properties1,4. Titan and Earth are the only worlds in the Solar System where rain reaches the surface, although the atmospheric cycles of water and methane are expected to be very different5. Here we report three-dimensional dynamical calculations showing that severe methane convective storms accompanied by intense precipitation may occur in Titan under the right environmental conditions. The strongest storms grow when the methane relative humidity in the middle troposphere is above 80 per cent, producing updrafts with maximum velocities of 20 m s-1, able to reach altitudes of 30 km before dissipating in 5–8 h. Raindrops of 1–5 mm in radius produce precipitation rainfalls on the surface as high as 110 kg m-2 and are comparable to flash flood events on Earth6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Observations and numerical simulation of convective clouds in Titan.
Figure 2: Particle size evolution and rain in a Titan thunderstorm.

Similar content being viewed by others

References

  1. Porco, C. et al. An overview of Titan from the Cassini spacecraft. Nature 434, 159–168 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Tomasko, M. G. et al. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438, 765–778 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Roe, H. G., de Pater, I., Macintosh, B. A. & McKay, C. P. Titan's clouds from Gemini and Keck adaptive optics imaging. Astrophys. J. 581, 1399–1406 (2002)

    Article  ADS  Google Scholar 

  4. Lebreton, J. P. et al. An overview of the descent and landing of the Huygens probe on Titan. Nature 438, 758–764 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lorentz, R. D., McKay, C. P. & Lunine, J. I. Photochemically driven collapse of Titan's atmosphere. Science 275, 642–645 (1997)

    Article  ADS  Google Scholar 

  6. Maddox, R. A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 61, 1374–1387 (1980)

    Article  ADS  Google Scholar 

  7. Grifftith, C. A., Owen, T., Miller, G. A. & Geballe, T. R. Transient clouds in Titan's lower atmosphere. Nature 359, 575–578 (1998)

    Article  ADS  Google Scholar 

  8. Griffith, C. A., Hall, J. L. & Geballe, T. R. Detection of daily clouds on Titan. Science 290, 509–513 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Brown, M. E., Bouchez, A. H. & Griffith, C. A. Direct detection of variable tropospheric clouds near Titan's south pole. Nature 420, 795–797 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Roe, H. G., Brown, M. E., Schaller, E. L., Bouchez, A. H. & Chadwick, A. Geographic control of Titan's mid-latitude clouds. Science 310, 477–479 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Griffith, C. A. et al. The evolution of Titan's mid-latitude clouds. Science 310, 474–477 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Awal, M. & Lunine, J. I. Moist convective clouds in Titan's atmosphere. Geophys. Res. Lett. 21, 2491–2494 (1994)

    Article  ADS  CAS  Google Scholar 

  13. Tokano, T. Meteorological assessment of the surface temperatures on Titan: constraints on the surface type. Icarus 173, 222–242 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Lorenz, R. D., Griffith, C. A., Lunine, J. I., McKay, C. P. & Rennò, N. O. Convective plumes and the scarcity of Titan's clouds. Geophys. Res. Lett. 32, L01201, doi:10.1029/2004GL021415 (2005)

    ADS  Google Scholar 

  15. Rannou, P., Montmessin, F., Hourdin, F. & Lebonnois, S. The latitudinal distribution of clouds on Titan. Science 311, 201–205 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Elachi, C. et al. Cassini radar views the surface of Titan. Science 308, 970–974 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Hueso, R. & Sánchez-Lavega, A. A three-dimensional model of moist convection for the giant planets: the Jupiter case. Icarus 151, 257–274 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Hueso, R. & Sánchez-Lavega, A. A three-dimensional model of moist convection for the giant planets II: Saturn's water and ammonia moist convective storms. Icarus 172, 255–271 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Lorenz, R. The life, death and afterlife of a raindrop on Titan. Planet. Space Sci. 41, 647–655 (1993)

    Article  ADS  CAS  Google Scholar 

  20. Houze, R. Cloud Dynamics Ch. 3 (Academic Press, San Diego, 1994)

    Google Scholar 

  21. Thompson, W. R., Zollweg, J. A. & Gabis, D. H. Vapor-liquid equilibrium thermodynamics of N2 + CH4—Model and Titan applications. Icarus 97, 187–199 (1992)

    Article  ADS  CAS  Google Scholar 

  22. Lellouch, E. Titan's atmosphere and hypothesized ocean: A reanalysis of the Voyager 1 radio-occultation and IRIS 7.7 µm data. Icarus 79, 328–349 (1989)

    Article  ADS  CAS  Google Scholar 

  23. Niemann, H. B. et al. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Samuelson, R. E., Nath, N. R. & Borysow, A. Gaseous abundances and methane supersaturation in Titan's troposphere. Planet. Space Sci. 45, 959–980 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Fulchignoni, M. et al. In situ measurements of the physical characteristics of Titan's environment. Nature 438, 785–791 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Tao, W. K. et al. Microphysics, radiation and surface processes in Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys. 82, 97–137 (2003)

    Article  Google Scholar 

  27. Schaller, E. L., Brown, M. E., Roe, H. G. & Bouchez, A. H. A large cloud outburst at Titan's south pole. Icarus 182, 224–229 (2006)

    Article  ADS  Google Scholar 

  28. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes 829 (Cambridge Univ. Press, Cambridge, 1992)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the MCYT Plan Nacional de Astronomía y Astrofísica, Grupos UPV and Fondos FEDER. R.H. was supported by the “Ramón y Cajal” programme. The SGI/IZO-SGIker UPV/EHU is gratefully acknowledged for allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Hueso or A. Sánchez-Lavega.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1 and 2 and Supplementary Table 1. Supplementary Figure 1 details methane molar mixing and saturation ratio profiles used in the simulations. Supplementary Figure 2 details the merger of two nearby convective cells triggered simultaneously. Supplementary Table 1 shows Additional simulations and results of Titan’s convective clouds. (DOC 967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hueso, R., Sánchez-Lavega, A. Methane storms on Saturn's moon Titan. Nature 442, 428–431 (2006). https://doi.org/10.1038/nature04933

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04933

  • Springer Nature Limited

This article is cited by

Navigation