Skip to main content
Log in

Chaos-based communications at high bit rates using commercial fibre-optic links

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Chaotic signals have been proposed as broadband information carriers with the potential of providing a high level of robustness and privacy in data transmission1,2. Laboratory demonstrations of chaos-based optical communications have already shown the potential of this technology3,4,5, but a field experiment using commercial optical networks has not been undertaken so far. Here we demonstrate high-speed long-distance communication based on chaos synchronization over a commercial fibre-optic channel. An optical carrier wave generated by a chaotic laser is used to encode a message for transmission over 120 km of optical fibre in the metropolitan area network of Athens, Greece. The message is decoded using an appropriate second laser which, by synchronizing with the chaotic carrier, allows for the separation of the carrier and the message. Transmission rates in the gigabit per second range are achieved, with corresponding bit-error rates below 10-7. The system uses matched pairs of semiconductor lasers as chaotic emitters and receivers, and off-the-shelf fibre-optic telecommunication components. Our results show that information can be transmitted at high bit rates using deterministic chaos in a manner that is robust to perturbations and channel disturbances unavoidable under real-world conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Two schematic set-ups for optical chaos communication.
Figure 2: Back-to-back synchronization.
Figure 3: Representative eye diagrams in the electro-optic set-up.
Figure 4: Field experiment of fibre transmission.

Similar content being viewed by others

Notes

  1. The PDF was replaced on 12 January 2006 because the earlier version had the wrong volume number (437 instead of 438) on each page.

References

  1. Cuomo, K. M., Oppenheim, A. V. & Strogatz, S. H. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II 40, 626–633 (1993)

    Article  Google Scholar 

  2. Colet, P. & Roy, R. Digital communication with synchronized chaotic lasers. Opt. Lett. 19, 2056–2058 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Van Wiggeren, G. D. & Roy, R. Communications with chaotic lasers. Science 279, 1198–1200 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Goedgebuer, J. P., Larger, L. & Porte, H. Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode. Phys. Rev. Lett. 80, 2249–2252 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Tang, S. & Liu, J. M. Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers. Opt. Lett. 26, 1843–1845 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Shannon, C. E. Communication theory of secrecy systems. Bell Syst. Technic. J. 28–4, 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  7. Kurtsiefer, C. et al. A step towards global key distribution. Nature 419, 450 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Ashwin, P. Synchronization from chaos. Nature 422, 384–385 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Mirasso, C. R., Colet, P. & Garcia-Fernandez, P. Synchronization of chaotic semiconductor lasers: Application to encoded communications. IEEE Photon. Technol. Lett. 8, 299–301 (1996)

    Article  ADS  Google Scholar 

  10. Kusumoto, K. & Ohtsubo, J. 1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers. Opt. Lett. 27, 989–991 (2002)

    Article  ADS  Google Scholar 

  11. Annovazzi-Lodi, V., Merlo, S., Norgia, M. & Scirè, A. Characterization of a chaotic telecommunication laser for different fiber cavity lengths. IEEE J. Quant. Electron. 38, 1171–1177 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Lee, M. W., Larger, L. & Goedgebuer, J. P. Transmission system using chaotic delays between lightwaves. IEEE J. Quant. Electron. 39, 931–936 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Vicente, R., Pérez, T. & Mirasso, C. R. Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers. IEEE J. Quant. Electron. 38, 1197–1204 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Lee, M. W., Paul, J., Sivaprakasam, S. & Shore, K. A. Comparison of closed-loop and open-loop feedback schemes of message decoding using chaotic laser diodes. Opt. Lett. 28, 2168–2170 (2003)

    Article  ADS  Google Scholar 

  15. Peil, M., Heil, T., Fischer, I. & Elsäßer, W. Synchronization of chaotic semiconductor laser systems: a vectorial coupling-dependent scenario. Phys. Rev. Lett. 88, 174101 (2002)

    Article  ADS  Google Scholar 

  16. Heil, T. et al. ON/OFF phase shift keying for chaos-encrypted communication using external-cavity semiconductor lasers. IEEE J. Quant. Electron. 38, 1162–1170 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Annovazzi Lodi, V., Benedetti, M., Merlo, S. & Provinzano, M. N. B. Optical chaos masking of video signals. IEEE Photon. Technol. Lett. 17, 1995–1997 (2005)

    Article  ADS  Google Scholar 

  18. Donati, S. & Mirasso, C. R. (eds) Feature section on optical chaos and applications to cryptography. IEEE J. Quant. Electron. 39, 1138–1204 (2002).

  19. Larger, L. & Goedgebuer, J. P. (eds) Cryptography using optical chaos. C.R. Phys. 5, 609–681 (2004).

  20. Uchida, A., Rogister, F., Garcia-Ojalvo, J. & Roy, R. Synchronization and communication with chaotic optical systems. Prog. Opt. 48, 203–341 (2005)

    Article  ADS  Google Scholar 

  21. Lee, M. W. & Shore, K. A. Chaotic message broadcasting using DFB laser diodes. Electron. Lett. 40, 614–615 (2004)

    Article  Google Scholar 

  22. Gollub, J. P. & Cross, M. C. Chaos in space and time. Nature 404, 710–711 (2000)

    Article  CAS  Google Scholar 

  23. Garcia-Ojalvo, J. & Roy, R. Spatiotemporal communication with synchronized optical chaos. Phys. Rev. Lett. 86, 5204–5207 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Matsuura, T., Uchida, A. & Yoshimori, S. Chaotic wavelength division multiplexing for optical communications. Opt. Lett. 29, 2731–2733 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the European Commission through the IST project OCCULT. We thank ATTICA TELECOMMS SA for providing the installed fibre infrastructure for the field experiment, and S. Hansmann and J. Schumacher for providing the matched laser and detector pairs. We thank S. H. Strogatz for a careful reading of the manuscript. We are also grateful for the collaboration of J. P. Goedgebuer, W. Elsäßer, M. Peil, S. Poinsot, M. Benedetti, S. Merlo, M. Norgia, M. W. Lee, Y. Chembo Kouomou, T. Pérez, R. Vicente, J. Mulet, J. M. Buldú, M. C. Torrent, S. Ortin and the rest of the participants of the OCCULT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio R. Mirasso.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyris, A., Syvridis, D., Larger, L. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005). https://doi.org/10.1038/nature04275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04275

  • Springer Nature Limited

This article is cited by

Navigation