Skip to main content
Log in

The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Some heavy elements (with atomic number A > 69) are produced by the ‘rapid’ (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons1,2,3,4,5,6,7,8. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from ∼0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites9 can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way10,11,12, to determine the U/Th production ratio very precisely . This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations5,6, to help determine the source of Galactic cosmic rays, and to date circumstellar grains5. I also estimate the age of the Milky Way ( in a way that is independent of the uncertainties associated with fluctuations in the microwave background13 or models of stellar evolution14,15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Distribution of G-dwarf metallicity normalized to solar composition.
Figure 2: Determinations of the U/Th production ratio and the age of the Milky Way.
Figure 3: Estimations of the 238 U/ 232 Th production ratio in r-process nucleosynthesis.

Similar content being viewed by others

References

  1. Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 29, 547–650 (1957)

    Article  ADS  Google Scholar 

  2. Cowan, J. J., Thielemann, F.-K. & Truran, J. W. Radioactive dating of the elements. Annu. Rev. Astron. Astrophys. 29, 447–497 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Pfeiffer, B., Kratz, K.-L. & Thielemann, F.-K. Analysis of the solar-system r-process abundance pattern with the new ETFSI-Q mass formula. Z. Phys. A 357, 235–238 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Meyer, B. S. & Truran, J. W. Nucleocosmochronology. Phys. Rep. 333–334, 1–11 (2000)

    Article  ADS  Google Scholar 

  5. Goriely, S. & Arnould, M. Actinides: How well do we know their stellar production? Astron. Astrophys. 379, 1113–1122 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Schatz, H. et al. Thorium and uranium chronometers applied to CS 31082–001. Astrophys. J. 579, 626–638 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Wanajo, S., Itoh, N., Ishimaru, Y., Nozawa, S. & Beers, T. C. The r-process in the neutrino winds of core-collapse supernovae and U-Th cosmochronology. Astrophys. J. 577, 853–865 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Otsuki, K., Mathews, G. J. & Kajino, T. r-Process abundance universality and actinide cosmochronology. N. Astron. 8, 767–776 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Chen, J. H., Wasserburg, G. J. & Papanastassiou, D. A. Th and U abundances in chondritic meteorites. Lunar Planet. Sci. XXIV, 277–278 (1993)

    ADS  Google Scholar 

  10. Cayrel, R. et al. Measurement of stellar age from uranium decay. Nature 409, 691–692 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hill, V. et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082–001. Astron. Astrophys. 387, 560–579 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Cowan, J. J. et al. The chemical composition and age of the metal-poor halo star BD +17°3248. Astrophys. J. 572, 861–879 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003)

    Article  ADS  Google Scholar 

  14. Krauss, L. M. & Chaboyer, B. Age estimates of globular clusters in the Milky Way: constraints on cosmology. Science 299, 65–69 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Hansen, B. et al. Hubble Space Telescope observations of the white dwarf cooling sequence of M4. Astrophys. J. Suppl. Ser. 155, 551–576 (2004)

    Article  ADS  Google Scholar 

  16. Rutherford, E. Origin of actinium and the age of the Earth. Nature 123, 313–314 (1929)

    Article  ADS  CAS  Google Scholar 

  17. Tinsley, B. M. Evolution of the stars and gas in galaxies. Fund. Cosmic Phys. 5, 287–388 (1980)

    ADS  CAS  Google Scholar 

  18. Yokoi, K., Takahashi, K. & Arnould, M. The 187Re-187Os chronology and chemical evolution of the Galaxy. Astron. Astrophys. 117, 65–82 (1983)

    ADS  CAS  Google Scholar 

  19. Clayton, D. D. Nuclear cosmochronology within analytic models of the chemical evolution of the solar neighbourhood. Mon. Not. R. Astron. Soc. 234, 1–36 (1988)

    Article  ADS  CAS  Google Scholar 

  20. Pagel, B. E. J. Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge Univ. Press, Cambridge, 1997)

    Google Scholar 

  21. Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Nordström, B. et al. The Geneva-Copenhagen survey of the solar neighbourhood. Astron. Astrophys. 418, 989–1019 (2004)

    Article  ADS  Google Scholar 

  23. Wakker, B. P. et al. Accretion of low-metallicity gas by the Milky Way. Nature 402, 388–390 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Dauphas, N., Rauscher, T., Marty, B. & Reisberg, L. Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries. Nucl. Phys. A 719, 287c–295c (2003)

    Article  ADS  Google Scholar 

  25. Kennicutt, R. C. Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Holmberg, J. & Flynn, C. The local density of matter mapped by Hipparcos. Mon. Not. R. Astron. Soc. 313, 209–216 (2000)

    Article  ADS  Google Scholar 

  27. Holmberg, J. & Flynn, C. The local surface density of disc matter mapped by Hipparcos. Mon. Not. R. Astron. Soc. 352, 440–446 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Chang, R. X., Hou, J. L., Shu, C. G. & Fu, C. Q. Two-component model for the chemical evolution of the galactic disk. Astron. Astrophys. 350, 38–48 (1999)

    ADS  CAS  Google Scholar 

  29. Argast, D., Samland, M., Gerhard, O. E. & Thielemann, F. K. Metal-poor halo stars as tracers of ISM mixing processes during halo formation. Astron. Astrophys. 356, 873–887 (2000)

    ADS  CAS  Google Scholar 

  30. Chiappini, C., Matteucci, F., Beers, T. C. & Nomoto, K. The earliest phases of Galaxy formation. Astrophys. J. 515, 226–238 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank J. W. Truran, T. Rauscher, A. M. Davis, J. J. Cowan, R. Cayrel, V. Hill, R. Yokochi, B. Marty and L. Reisberg for discussions, and B. Hansen for communication of the 68% confidence interval for the age of the globular cluster Messier 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dauphas.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The author declares no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Equations S1-S12, Supplementary Figure S1 and Supplementary Table S1 (PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauphas, N. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars. Nature 435, 1203–1205 (2005). https://doi.org/10.1038/nature03645

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03645

  • Springer Nature Limited

This article is cited by

Navigation