Skip to main content
Log in

A planetary system as the origin of structure in Fomalhaut's dust belt

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Sun and >15 per cent of nearby stars are surrounded by dusty disks that must be collisionally replenished by asteroids and comets, as the dust would otherwise be depleted on timescales <107 years (ref. 1). Theoretical studies show that the structure of a dusty disk can be modified by the gravitational influence of planets2,3,4, but the observational evidence is incomplete, at least in part because maps of the thermal infrared emission from the disks have low linear resolution (35 au in the best case5). Optical images provide higher resolution, but the closest examples (AU Mic and β Pic) are edge-on6,7, preventing the direct measurement of the azimuthal and radial disk structure that is required for fitting theoretical models of planetary perturbations. Here we report the detection of optical light reflected from the dust grains orbiting Fomalhaut (HD 216956). The system is inclined 24° away from edge-on, enabling the measurement of disk structure around its entire circumference, at a linear resolution of 0.5 au. The dust is distributed in a belt 25 au wide, with a very sharp inner edge at a radial distance of 133 au, and we measure an offset of 15 au between the belt's geometric centre and Fomalhaut. Taken together, the sharp inner edge and offset demonstrate the presence of planetary-mass objects orbiting Fomalhaut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Optical detection of dust in Fomalhaut's Kuiper belt.
Figure 2: False colour representations of the deprojected belt image, with symbols as in Fig. 1.
Figure 3: Radial cut across the belt in the deprojected, illumination-corrected data (Fig. 2).

Similar content being viewed by others

References

  1. Backman, D. E. & Paresce, F. in Protostars and Protoplanets III (eds Levy, E. H. & Lunine, J. I.) 1253–1304 (Univ. Arizona Press, Tucson, 1993)

    Google Scholar 

  2. Roques, F., Scholl, H., Sicardy, B. & Smith, B. A. Is there a planet around beta Pictoris? Perturbations of a planet on a circumstellar dust disk. 1: The numerical model. Icarus 108, 37–58 (1994)

    Article  ADS  Google Scholar 

  3. Liou, J.-C. & Zook, H. A. Signatures of giant planets imprinted on the Edgeworth-Kuiper Belt dust disk. Astron. J. 118, 580–590 (1999)

    Article  ADS  Google Scholar 

  4. Ozernoy, L. M., Gorkavyi, N. N., Mather, J. C. & Taidakova, T. A. Signatures of extrasolar planets on dust debris disks. Astrophys. J. 537, L147–L151 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Greaves, W. S. et al. Structure in the epsilon Eridani debris disk. Astrophys. J. 619, L187–L190 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Smith, B. A. & Terrile, R. J. A circumstellar disk around Beta Pictoris. Science 226, 1421–1424 (1984)

    Article  ADS  CAS  Google Scholar 

  7. Kalas, P., Liu, M. C. & Matthews, B. C. Discovery of a large dust disk around the nearby star AU Microscopii. Science 303, 1990–1993 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Aumann, H. H. IRAS observations of matter around nearby stars. Publ. Astron. Soc. Pacif. 97, 885–891 (1985)

    Article  ADS  Google Scholar 

  9. Gillett, F. in Light on Dark Matter (ed. Israel, F. P.) 61–69 (Reidel, Dordrecht, 1986)

    Book  Google Scholar 

  10. Holland, W. S. et al. Submillimeter images of dusty debris around nearby stars. Nature 392, 788–791 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Dent, W. R. F., Walker, H. J., Holland, W. S. & Greaves, J. S. Models of the dust structures around Vega-excess stars. Mon. Not. R. Astron. Soc. 314, 702–712 (2000)

    Article  ADS  Google Scholar 

  12. Smart, W. M. On the derivation of the elements of a visual binary orbit by Kowalsky's method. Mon. Not. R. Astron. Soc. 90, 534–538 (1930)

    Article  ADS  Google Scholar 

  13. Kalas, P. & Jewitt, D. The detectability of Beta Pic-like circumstellar disks around nearby main sequence stars. Astron. J. 111, 1347–1355 (1996)

    Article  ADS  Google Scholar 

  14. Clampin, M. et al. Hubble Space Telescope ACS coronagraphic imaging of the circumstellar disk around HD 141569. Astrophys. J. 126, 358–392 (2003)

    Google Scholar 

  15. Fixsen, D. J. & Dwek, E. The zodiacal emission spectrum as determined by COBE and its implications. Astrophys. J. 578, 1009–1014 (2002)

    Article  ADS  Google Scholar 

  16. Stapelfeldt, K. R. et al. First look at the Fomalhaut debris disk with the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 439–442 (2004)

    Article  Google Scholar 

  17. Artymowicz, P. & Clampin, M. Dust around main-sequence stars: Nature or nurture by the interstellar medium? Astron. J. 490, 863–878 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Wyatt, M. C. & Dent, W. R. F. Collisional processes in extrasolar planetesimal discs — dust clumps in Fomalhaut's debris disc. Mon. Not. R. Astron. Soc. 334, 589–607 (2002)

    Article  ADS  Google Scholar 

  19. Holland, W. S. et al. Submillimeter observations of an asymmetric dust disk around Fomalhaut. Astrophys. J. 582, 1141–1146 (2003)

    Article  ADS  Google Scholar 

  20. Chiang, E. I. & Goldreich, P. Apse alignment of narrow eccentric planetary rings. Astrophys. J. 540, 1084–1090 (2000)

    Article  ADS  Google Scholar 

  21. Wyatt, M. C. et al. How observations of circumstellar disk asymmetries can reveal hidden planets: Pericenter glow and its application to the HR 4796 disk. Astrophys. J. 527, 918–944 (1999)

    Article  ADS  Google Scholar 

  22. Kuchner, M. J. & Holman, M. J. The geometry of resonant signatures in debris disks with planets. Astrophys. J. 588, 1110–1120 (2003)

    Article  ADS  Google Scholar 

  23. Moro-Martin, A. & Malhotra, R. A study of the dynamics of dust from the Kuiper Belt: Spatial distribution and spectral energy distribution. Astron. J. 124, 2305–2321 (2002)

    Article  ADS  Google Scholar 

  24. Barrado y Navascues, D. The Castor moving group. The age of Fomalhaut and Vega. Astron. Astrophys. 339, 831–839 (1998)

    ADS  Google Scholar 

  25. Kalas, P. & Jewitt, D. Asymmetries in the Beta Pictoris dust disk. Astron. J. 110, 1008–1017 (1995)

    Article  Google Scholar 

  26. Krist, J. et al. Hubble Space Telescope ACS coronagraphic imaging of the AU Microscopii debris disk. Astron. J. 129, 1008–1017 (2005)

    Article  ADS  Google Scholar 

  27. Luu, J. X. & Jewitt, D. Kuiper Belt Objects: Relics from the accretion disk of the Sun. Annu. Rev. Astron. Astrophys. 40, 63–101 (2002)

    Article  ADS  Google Scholar 

  28. Kelsall, T. et al. The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the interplanetary dust cloud. Astrophys. J. 508, 44–73 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is based on observations with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy. P.K. acknowledges support from the Space Telescope Science Institute and NASA's Origins of Solar Systems programme. P.K. and J.R.G. also thank the NSF Center for Adaptive Optics, managed by the University of California, Santa Cruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kalas.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalas, P., Graham, J. & Clampin, M. A planetary system as the origin of structure in Fomalhaut's dust belt. Nature 435, 1067–1070 (2005). https://doi.org/10.1038/nature03601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03601

  • Springer Nature Limited

This article is cited by

Navigation