Skip to main content
Log in

Mitochondrial membrane remodelling regulated by a conserved rhomboid protease

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Rhomboid proteins are intramembrane serine proteases that activate epidermal growth factor receptor (EGFR) signalling in Drosophila1. Rhomboids are conserved throughout evolution2,3,4,5, and even in eukaryotes their existence in species with no EGFRs implies that they must have additional roles. Here we report that Saccharomyces cerevisiae has two rhomboids, which we have named Rbd1p and Rbd2p. RBD1 deletion results in a respiratory defect; consistent with this, Rbd1p is localized in the inner mitochondrial membrane and mutant cells have disrupted mitochondria. We have identified two substrates of Rbd1p: cytochrome c peroxidase (Ccp1p); and a dynamin-like GTPase (Mgm1p), which is involved in mitochondrial membrane fusion6,7,8,9,10. Rbd1p mutants are indistinguishable from Mgm1p mutants, indicating that Mgm1p is a key substrate of Rbd1p and explaining the rbd1Δ mitochondrial phenotype. Our data indicate that mitochondrial membrane remodelling is regulated by cleavage of Mgm1p and show that intramembrane proteolysis by rhomboids controls cellular processes other than signalling. In addition, mitochondrial rhomboids are conserved throughout eukaryotes and the mammalian homologue, PARL11, rescues the yeast mutant, suggesting that these proteins represent a functionally conserved subclass of rhomboid proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Characterization of Rbd1p.
Figure 2: Phenotypes of candidate Rbd1p substrates.
Figure 3: Cleavage of Ccp1p and Mgm1p depends on Rbd1p in vivo.
Figure 4: Mitochondrial rhomboids are conserved in higher eukaryotes.

Similar content being viewed by others

References

  1. Urban, S., Lee, J. R. & Freeman, M. Drosophila Rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001)

    Article  CAS  Google Scholar 

  2. Wasserman, J. D., Urban, S. & Freeman, M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signalling. Genes Dev. 14, 1651–1663 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pascall, J. C. & Brown, K. D. Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett. 429, 337–340 (1998)

    Article  CAS  Google Scholar 

  4. Urban, S., Schlieper, D. & Freeman, M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512 (2002)

    Article  CAS  Google Scholar 

  5. Koonin, E. V. et al. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19 www.genomebiology.com (2003)

    Article  Google Scholar 

  6. Jones, B. A. & Fangman, W. L. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 6, 380–389 (1992)

    Article  CAS  Google Scholar 

  7. Shepard, K. A. & Yaffe, M. P. The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J. Cell Biol. 144, 711–720 (1999)

    Article  CAS  Google Scholar 

  8. Wong, E. D. et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341–352 (2000)

    Article  CAS  Google Scholar 

  9. Satoh, M., Hamamoto, T., Seo, N., Kagawa, Y. & Endo, H. Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun. 300, 482–493 (2003)

    Article  CAS  Google Scholar 

  10. Wong, E. D. et al. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303–311 (2003)

    Article  CAS  Google Scholar 

  11. Pellegrini, L. et al. PAMP and PARL, two novel putative metalloproteases interacting with the COOH-terminus of Presenilin-1 and -2. J. Alzheimers Dis. 3, 181–190 (2001)

    Article  CAS  Google Scholar 

  12. Lee, J. R., Urban, S., Garvey, C. F. & Freeman, M. Regulated intracellular ligand transport and proteolysis controls EGF signal activation in Drosophila. Cell 107, 161–171 (2001)

    Article  CAS  Google Scholar 

  13. Tsruya, R. et al. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev. 16, 222–234 (2002)

    Article  CAS  Google Scholar 

  14. Ghiglione, C. et al. Mechanism of activation of the Drosophila EGF receptor by the TGFα ligand Gurken during oogenesis. Development 129, 175–186 (2002)

    Article  CAS  Google Scholar 

  15. Klämbt, C. EGF receptor signalling: roles of star and rhomboid revealed. Curr. Biol. 12, R21–R23 (2002)

    Article  Google Scholar 

  16. Claros, M. G. & Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996)

    Article  CAS  Google Scholar 

  17. Urban, S., Lee, J. R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 21, 4277–4286 (2002)

    Article  CAS  Google Scholar 

  18. Kaput, J., Goltz, S. & Blobel, G. Nucleotide sequence of the yeast nuclear gene for cytochrome c peroxidase precursor. Functional implications of the pre sequence for protein transport into mitochondria. J. Biol. Chem. 257, 15054–15058 (1982)

    CAS  PubMed  Google Scholar 

  19. Hahne, K., Haucke, V., Ramage, L. & Schatz, G. Incomplete arrest in the outer membrane sorts NADH-cytochrome b5 reductase to two different submitochondrial compartments. Cell 79, 829–839 (1994)

    Article  CAS  Google Scholar 

  20. Muratsubaki, H. & Enomoto, K. One of the fumarate reductase isoenzymes from Saccharomyces cerevisiae is encoded by the OSM1 gene. Arch. Biochem. Biophys. 352, 175–181 (1998)

    Article  CAS  Google Scholar 

  21. Church, C., Chapon, C. & Poyton, R. O. Cloning and characterization of PET100, a gene required for the assembly of yeast cytochrome c oxidase. J. Biol. Chem. 271, 18499–18507 (1996)

    Article  CAS  Google Scholar 

  22. Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G. & Pratje, E. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol. 323, 835–843 (2002)

    Article  CAS  Google Scholar 

  23. Urban, S. & Freeman, M. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell (in the press)

  24. Hermann, G. J. & Shaw, J. M. Mitochondrial dynamics in yeast. Annu. Rev. Cell Dev. Biol. 14, 265–303 (1998)

    Article  CAS  Google Scholar 

  25. Yaffe, M. P. Dynamic mitochondria. Nature Cell Biol. 1, E149–E150 (1999)

    Article  CAS  Google Scholar 

  26. Griparic, L. & van der Bliek, A. M. The many shapes of mitochondrial membranes. Traffic 2, 235–244 (2001)

    Article  CAS  Google Scholar 

  27. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genet. 26, 211–215 (2000)

    Article  CAS  Google Scholar 

  28. Delettre, C., Lenaers, G., Pelloquin, L., Belenguer, P. & Hamel, C. P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab. 75, 97–107 (2002)

    Article  CAS  Google Scholar 

  29. Guthrie, C. & Fink, G. R. (eds) Guide to Yeast Genetics (Academic, San Diego, 2002)

  30. Daum, G., Bohni, P. C. & Schatz, G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257, 13028–13033 (1982)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Pelham, S. Munro and J. Whyte for help and support; B. De Strooper for discussions; members of our laboratory for advice; M. Yaffe, R. Jensen and B. Westermann for antibodies; and P. Cliften and M. Johnston for providing yeast sequences before publication. G.A.M. is supported by an EMBO long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Freeman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQuibban, G., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003). https://doi.org/10.1038/nature01633

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01633

  • Springer Nature Limited

This article is cited by

Navigation