Skip to main content
Log in

Characterization of interleukin 8 in woodchucks with chronic hepatitis B and hepatocellular carcinoma

  • Original Article
  • Published:
Genes & Immunity Submit manuscript

Abstract

The eastern woodchuck, Marmota monax, represents a useful animal model to study hepatitis B virus infection in humans. However, immunological studies in this model have been impeded by a lack of basic information about the components of the immune system such as cytokines and chemokines. To clarify the role(s) of interleukin 8 (IL-8) in chronic hepatitis B and hepatocellular carcinoma (HCC) in the woodchuck model, we cloned and characterized the woodchuck IL-8 cDNA and genomic DNA. Sequence analysis revealed that the organization of the wk-IL-8 gene is similar to that of the human IL-8 gene and consists of four exons and three introns. Woodchuck IL-8 protein exhibits the conserved ELRCXC motif of IL-8 and shows 87, 82, 82 and 79% similarity with rabbit, ovine, bovine and human IL-8 proteins, respectively. The biological activity of wk-IL-8 was demonstrated using neutrophil chemotaxis assays. Wk-IL-8 could be readily detected in both tumor and non-tumor tissues with higher expression in the non-tumor tissues in most cases. The results from this study will facilitate the investigation of IL-8 in the immunopathogenesis of hepadnavirus-related diseases by the woodchuck model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hollinger FB, Liang J . Hepatitis B virus. In: Knipe DM, Howley PM (eds). Fields Virology, 4th edn. Lippincott-Raven: Philadelphia, 2001, pp 2971–3036.

    Google Scholar 

  2. Lavanchy D . Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11: 97–107.

    Article  CAS  Google Scholar 

  3. Tennant BC, Gerin JL . The woodchuck model of hepatitis B virus infection. Ilar J 2001; 42: 89–102.

    Article  CAS  Google Scholar 

  4. Menne S, Maschke J, Lu M, Grosse-Wilde H, Roggendorf M . T-Cell response to woodchuck hepatitis virus (WHV) antigens during acute self-limited WHV infection and convalescence and after viral challenge. J Virol 1998; 72: 6083–6091.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Summers J, Smolec JM, Snyder R . A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci USA 1978; 75: 4533–4537.

    Article  CAS  Google Scholar 

  6. Roggendorf M, Tolle TK . The woodchuck: an animal model for hepatitis B virus infection in man. Intervirology 1995; 38: 100–112.

    Article  CAS  Google Scholar 

  7. Menne S, Cote PJ . The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol 2007; 13: 104–124.

    Article  CAS  Google Scholar 

  8. Li DH, Kumanogoh A, Cao TM, Parnes JR, Cullen JM . Woodchuck interleukin-6 gene: structure, characterization, and biologic activity. Gene 2004; 342: 157–164.

    Article  CAS  Google Scholar 

  9. Wang B, Lohrengel B, Lu Y, Meng Z, Xu Y, Yang D et al. Molecular characterization of woodchuck interleukin 15 (wIL-15) and detection of its expression in liver samples of woodchucks infected with woodchuck hepatitis virus (WHV). Cytokine 2005; 32: 296–303.

    Article  CAS  Google Scholar 

  10. Wu HL, Chen PJ, Lin HK, Lee RS, Lin HL, Liu CJ et al. Molecular cloning and expression of woodchuck granulocyte-macrophage colony stimulating factor. J Med Virol 2001; 65: 567–575.

    Article  CAS  Google Scholar 

  11. Baggiolini M, Loetscher P, Moser B . Interleukin-8 and the chemokine family. Int J Immunopharmacol 1995; 17: 103–108.

    Article  CAS  Google Scholar 

  12. Takahashi M, Jeevan A, Sawant K, McMurray DN, Yoshimura T . Cloning and characterization of guinea pig CXCR1. Mol Immunol 2007; 44: 878–888.

    Article  CAS  Google Scholar 

  13. Baggiolini M, Clark-Lewis I . Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 1992; 307: 97–101.

    Article  CAS  Google Scholar 

  14. Masumoto T, Ohkubo K, Yamamoto K, Ninomiya T, Abe M, Akbar SM et al. Serum IL-8 levels and localization of IL-8 in liver from patients with chronic viral hepatitis. Hepatogastroenterology 1998; 45: 1630–1634.

    CAS  PubMed  Google Scholar 

  15. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, Lampertico P et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007; 204: 667–680.

    Article  CAS  Google Scholar 

  16. Xie K . Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev 2001; 12: 375–391.

    Article  CAS  Google Scholar 

  17. Miyamoto M, Shimizu Y, Okada K, Kashii Y, Higuchi K, Watanabe A . Effect of interleukin-8 on production of tumor-associated substances and autocrine growth of human liver and pancreatic cancer cells. Cancer Immunol Immunother 1998; 47: 47–57.

    Article  CAS  Google Scholar 

  18. Akiba J, Yano H, Ogasawara S, Higaki K, Kojiro M . Expression and function of interleukin-8 in human hepatocellular carcinoma. Int J Oncol 2001; 18: 257–264.

    CAS  PubMed  Google Scholar 

  19. Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406–425.

    CAS  Google Scholar 

  20. Bendtsen JD, Nielsen H, von Heijne G, Brunak S . Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340: 783–795.

    Article  Google Scholar 

  21. Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M et al. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Proc Natl Acad Sci USA 1991; 88: 502–506.

    Article  CAS  Google Scholar 

  22. Hebert CA, Vitangcol RV, Baker JB . Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem 1991; 266: 18989–18994.

    CAS  PubMed  Google Scholar 

  23. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 1995; 270: 27348–27357.

    Article  CAS  Google Scholar 

  24. Clark-Lewis I, Dewald B, Loetscher M, Moser B, Baggiolini M . Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem 1994; 269: 16075–16081.

    CAS  PubMed  Google Scholar 

  25. Rajarathnam K, Clark-Lewis I, Sykes BD . 1H NMR studies of interleukin 8 analogs: characterization of the domains essential for function. Biochemistry 1994; 33: 6623–6630.

    Article  CAS  Google Scholar 

  26. Clark-Lewis I, Schumacher C, Baggiolini M, Moser B . Structure-activity relationships of interleukin-8 determined using chemically synthesized analogs. Critical role of NH2-terminal residues and evidence for uncoupling of neutrophil chemotaxis, exocytosis, and receptor binding activities. J Biol Chem 1991; 266: 23128–23134.

    CAS  PubMed  Google Scholar 

  27. Mukaida N, Shiroo M, Matsushima K . Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J Immunol 1989; 143: 1366–1371.

    CAS  PubMed  Google Scholar 

  28. Mount SM . A catalogue of splice junction sequences. Nucleic Acids Res. 1982; 10: 459–472.

    Article  CAS  Google Scholar 

  29. Thornton AJ, Strieter RM, Lindley I, Baggiolini M, Kunkel SL . Cytokine-induced gene expression of a neutrophil chemotactic factor/IL-8 in human hepatocytes. J Immunol 1990; 144: 2609–2613.

    CAS  PubMed  Google Scholar 

  30. Schechter EM, Summers J, Ogston CW . Characterization of a herpesvirus isolated from woodchuck hepatocytes. J Gen Virol 1988; 69 (Part 7): 1591–1599.

    Article  CAS  Google Scholar 

  31. Yoshimura T, Johnson DG . cDNA cloning and expression of guinea pig neutrophil attractant protein-1 (NAP-1). NAP-1 is highly conserved in guinea pig. J Immunol 1993; 151: 6225–6236.

    CAS  PubMed  Google Scholar 

  32. Seow HF, Yoshimura T, Wood PR, Colditz IG . Cloning, sequencing, expression and inflammatory activity in skin of ovine interleukin-8. Immunol Cell Biol 1994; 72: 398–405.

    Article  CAS  Google Scholar 

  33. Morsey MA, Popowych Y, Kowalski J, Gerlach G, Godson D, Campos M et al. Molecular cloning and expression of bovine interleukin-8. Microb Pathog 1996; 20: 203–212.

    Article  CAS  Google Scholar 

  34. Yoshimura T, Yuhki N . Neutrophil attractant/activation protein-1 and monocyte chemoattractant protein-1 in rabbit. cDNA cloning and their expression in spleen cells. J Immunol 1991; 146: 3483–3488.

    CAS  PubMed  Google Scholar 

  35. Hammond ME, Shyamala V, Siani MA, Gallegos CA, Feucht PH, Abbott J et al. Receptor recognition and specificity of interleukin-8 is determined by residues that cluster near a surface-accessible hydrophobic pocket. J Biol Chem 1996; 271: 8228–8235.

    Article  CAS  Google Scholar 

  36. Schraufstatter IU, Ma M, Oades ZG, Barritt DS, Cochrane CG . The role of Tyr13 and Lys15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. J Biol Chem 1995; 270: 10428–10431.

    Article  CAS  Google Scholar 

  37. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 1994; 265: 682–684.

    Article  CAS  Google Scholar 

  38. Lohrengel B, Lu M, Roggendorf M . Molecular cloning of the woodchuck cytokines: TNF-alpha, IFN-gamma, and IL-6. Immunogenetics 1998; 47: 332–335.

    Article  CAS  Google Scholar 

  39. Mukaida N, Harada A, Matsushima K . Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions. Cytokine Growth Factor Rev 1998; 9: 9–23.

    Article  CAS  Google Scholar 

  40. Gomez-Quiroz L, Bucio L, Souza V, Escobar C, Farfan B, Hernandez E et al. Interleukin 8 response and oxidative stress in HepG2 cells treated with ethanol, acetaldehyde or lipopolysaccharide. Hepatol Res 2003; 26: 134–141.

    Article  CAS  Google Scholar 

  41. Gomez-Quiroz LE, Paris R, Lluis JM, Bucio L, Souza V, Hernandez E et al. Differential modulation of interleukin 8 by interleukin 4 and interleukin 10 in HepG2 cells treated with acetaldehyde. Liver Int 2005; 25: 122–130.

    Article  CAS  Google Scholar 

  42. Kubo F, Ueno S, Hiwatashi K, Sakoda M, Kawaida K, Nuruki K et al. Interleukin 8 in human hepatocellular carcinoma correlates with cancer cell invasion of vessels but not with tumor angiogenesis. Ann Surg Oncol 2005; 12: 800–807.

    Article  Google Scholar 

  43. Ren Y, Poon RT, Tsui HT, Chen WH, Li Z, Lau C et al. Interleukin-8 serum levels in patients with hepatocellular carcinoma: correlations with clinicopathological features and prognosis. Clin Cancer Res 2003; 9: 5996–6001.

    CAS  PubMed  Google Scholar 

  44. Tachibana Y, Nakamoto Y, Mukaida N, Kaneko S . Intrahepatic interleukin-8 production during disease progression of chronic hepatitis C. Cancer Lett 2007; 251: 36–42.

    Article  CAS  Google Scholar 

  45. Gouillat C, Manganas D, Zoulim F, Vitrey D, Saguier G, Guillaud M et al. Woodchuck hepatitis virus-induced carcinoma as a relevant natural model for therapy of human hepatoma. J Hepatol 1997; 26: 1324–1330.

    Article  CAS  Google Scholar 

  46. Tennant BC, Toshkov IA, Peek SF, Jacob JR, Menne S, Hornbuckle WE et al. Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology 2004; 127: S283–S293.

    Article  Google Scholar 

  47. Freund A, Jolivel V, Durand S, Kersual N, Chalbos D, Chavey C et al. Mechanisms underlying differential expression of interleukin-8 in breast cancer cells. Oncogene 2004; 23: 6105–6114.

    Article  CAS  Google Scholar 

  48. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  Google Scholar 

  49. Shaio MF, Lin PR, Liu JY, Yang KD . Generation of interleukin-8 from human monocytes in response to Trichomonas vaginalis stimulation. Infect Immun 1995; 63: 3864–3870.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA . Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol 2006; 80: 2684–2693.

    Article  CAS  Google Scholar 

  51. Riu C . A new rapid method of staining thin blood film: first report. J. Formasa Med Assoc 1953; 52: 348–352.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Drs Betty A Wu-Hsieh, Chung-Yi Hu and Fang Liao for helpful suggestions and discussions on neutrophil chemotaxis assay. We also thank Miss Hui-Chu Tu and Miss Hsiu-Li Chou for their excellent technical assistance.

This research was supported by funds from the National Research Program for Genomic Medicine of National Science Council (Grant NSC 96-3112-B-002-009), National Taiwan University (Grant 95R0066-BM02-04) and National Taiwan University Hospital (Grant NTUH.97A10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-L Wu.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CJ., Huang, YJ., Chen, HL. et al. Characterization of interleukin 8 in woodchucks with chronic hepatitis B and hepatocellular carcinoma. Genes Immun 10, 27–36 (2009). https://doi.org/10.1038/gene.2008.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2008.86

  • Springer Nature Limited

Keywords

This article is cited by

Navigation