Skip to main content

Advertisement

Log in

Role of dendritic cells: a step forward for the hygiene hypothesis

  • Review
  • Published:
Cellular & Molecular Immunology Submit manuscript

Abstract

The hygiene hypothesis was proposed more than two decades ago, but its mechanism remains unclear. This review focuses on recent advances in the field, especially on the role played by dendritic cells (DCs) and their modulating effects on various infections and allergic diseases, including allergic asthma. DCs isolated from mice long after the resolution of an infection were reported to have a significant modulating effect on allergen-specific Th2 responses in both in vitro and in vivo systems. These DCs showed DC1-like and/or tolerogenic DC capacity, which allowed for the inhibition of allergic responses by immune deviation (enhancing Th1 response) and immune regulation (through regulatory T-cell and Th2 hyporesponsiveness) mechanisms. These findings represented a significant advance in the elucidation of the mechanisms underlying the hygiene hypothesis. Further investigation on the mechanisms by which DCs are ‘educated’ by infectious agents and the influence of the type, time, and extent of infections on this ‘education’ process will help us understand immune regulation in disease settings and in the rational design of preventive/therapeutic approaches to allergy/asthma and infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Strachan DP . Hay fever, hygiene, and household size. BMJ 1989; 299( 6710): 1259–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schaub B, Lauener R, von Mutius E . The many faces of the hygiene hypothesis. J Allergy Clin Immunol 2006; 117: 969–977.

    Article  PubMed  Google Scholar 

  3. Erb KJ . Atopic disorders: a default pathway in the absence of infection? Immunol Today 1999; 20: 317–320.

    Article  CAS  PubMed  Google Scholar 

  4. Holgate ST . The epidemic of allergy and asthma. Nature 1999; 402( 6760 Suppl): B2–B4.

    Article  CAS  PubMed  Google Scholar 

  5. Sweiss ST . Eat dirt—the hygiene hypothesis and allergic diseases. N Engl J Med 2002; 347: 930–931.

    Article  Google Scholar 

  6. Shirakawa T, Enomoto T, Shimazu S, Hopkin JM . The inverse association between tuberculin responses and atopic disorder. Science 1997; 275( 5296): 77–79.

    Article  CAS  PubMed  Google Scholar 

  7. Aaby P, Shaheen SO, Heyes CB, Goudiaby A, Hall AJ, Shiell AW et al. Early BCG vaccination and reduction in atopy in Guinea-Bissau. Clin Exp Allergy 2000; 30: 644–650.

    Article  CAS  PubMed  Google Scholar 

  8. Shaheen SO, Aaby P, Hall AJ, Barker DJ, Heyes CB, Shiell AW et al. Measles and atopy in Guinea-Bissau. Lancet 1996; 347( 9018): 1792–1796.

    Article  CAS  PubMed  Google Scholar 

  9. Bodner C, Anderson WJ, Reid TS, Godden DJ . Childhood exposure to infection and risk of adult onset wheeze and atopy. Thorax 2000; 55: 383–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu AH, Murphy JR . Hygiene hypothesis: fact or fiction? J Allergy Clin Immunol 2003; 11: 471–478.

    Article  CAS  Google Scholar 

  11. Matricardi PM, Rosmini F, Ferrigno L, Nisini R, Rapicetta M, Chionne P et al. Cross sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis A virus. BMJ 1997; 314( 7086): 999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Umetsu DT, McIntire JJ, Akbari O, Macaubas C, DeKruyff RH . Asthma: an epidemic of dysregulated immunity Nat Immunol 2002; 3: 715–720.

    Article  CAS  PubMed  Google Scholar 

  13. Yazdanbakhsh M, Kremsner PG, van Ree R . Allergy, parasites, and the hygiene hypothesis. Science 2002; 296( 5567): 490–494.

    Article  CAS  PubMed  Google Scholar 

  14. Araujo MI, Hoppe B, Medeiros M, Alcantara L, Almeida MC, Schriefer A et al. Impaired T helper 2 response to aeroallergen in helminth-infected patients with asthma. J Infect Dis 2004; 190: 1797–1803.

    Article  CAS  PubMed  Google Scholar 

  15. von Mutius E, Braun-Fahrlander C, Schierl R, Riedler J, Ehlermann S, Maisch S et al. Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 2000; 30: 1230–1234.

    Article  CAS  PubMed  Google Scholar 

  16. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358: 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  17. Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blumer N, von Mutius E et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 2007; 119: 1514–1521.

    Article  PubMed  Google Scholar 

  18. El-Zein M, Parent ME, Benedetti A, Rousseau MC . Does BCG vaccination protect against the development of childhood asthma? A systematic review and meta-analysis of epidemiological studies. Int J Epidemiol 2010; 39: 469–486.

    Article  PubMed  Google Scholar 

  19. Erb KJ, Holloway JW, Sobeck A, Moll H, Le Gros G . Infection of mice with Mycobacterium bovis-Bacillus Calmette-Guerin (BCG) suppresses allergen-induced airway eosinophilia. J Exp Med 1998; 187: 561–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Herz U, Gerhold K, Gruber C, Braun A, Wahn U, Renz H et al. BCG infection suppresses allergic sensitization and development of increased airway reactivity in an animal model. J Allergy Clin Immunol 1998; 102: 867–874.

    Article  CAS  PubMed  Google Scholar 

  21. Broide D, Schwarze J, Tighe H, Gifford T, Nguyen MD, Malek S et al. Immunostimulatory DNA sequences inhibit IL-5, eosinophilic inflammation, and airway hyperresponsiveness in mice. J Immunol 1998; 161: 7054–7062.

    CAS  PubMed  Google Scholar 

  22. Kline JN, Waldschmidt TJ, Businga TR, Lemish JE, Weinstock JV, Thorne PS et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 1998; 160: 2555–2559.

    CAS  PubMed  Google Scholar 

  23. Stampfli MR, Ritz SA, Neigh GS, Sime PJ, Lei XF, Xing Z et al. Adenoviral infection inhibits allergic airways inflammation in mice. Clin Exp Allergy 1998; 28: 1581–1590.

    Article  CAS  PubMed  Google Scholar 

  24. Wang CC, Rook GA . Inhibition of an established allergic response to ovalbumin in BALB/c mice by killed Mycobacterium vaccae. Immunology 1998; 93: 307–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yeung VP, Gieni RS, Umetsu DT, DeKruyff RH . Heat-killed Listeria monocytogenes as an adjuvant converts established murine Th2-dominated immune responses into Th1-dominated responses. J Immunol 1998; 161: 4146–4152.

    CAS  PubMed  Google Scholar 

  26. Hansen G, Yeung VP, Berry G, Umetsu DT, DeKruyff RH . Vaccination with heat-killed Listeria as adjuvant reverses established allergen-induced airway hyperreactivity and inflammation: role of CD8+ T cells and IL-18. J Immunol 2000; 164: 223–230.

    Article  CAS  PubMed  Google Scholar 

  27. Smits HH, Hammad H, van Nimwegen M, Soullie T, Willart MA, Lievers E et al. Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection. J Allergy Clin Immunol 2007; 120: 932–940.

    Article  CAS  PubMed  Google Scholar 

  28. Dittrich AM, Erbacher A, Specht S, Diesner F, Krokowski M, Avagyan A et al. Helminth infection with Litomosoides sigmodontis induces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model. J Immunol 2008; 180: 1792–1799.

    Article  CAS  PubMed  Google Scholar 

  29. Mangan NE, Rooijen NV, McKenzie AN, Fallon PG . Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol 2006; 176: 138–147.

    Article  CAS  PubMed  Google Scholar 

  30. Kitagaki K, Businga TR, Racila D, Elliott DE, Weinstock JV, Kline JN . Intestinal helminthes protect in a murine model of asthma. J Immunol 2006; 177: 1628–1635.

    Article  CAS  PubMed  Google Scholar 

  31. Yang X, Wang S, Fan Y, Zhu L . Systemic mycobacterial infection inhibits antigen-specific immunoglobulin E production, bronchial mucus production and eosinophilic inflammation induced by allergen. Immunology 1999; 98: 329–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bilenki L, Fan Y, Wang S, Yang J, Han X, Yang X . Chlamydia trachomatis infection inhibit asthma-like reaction induced by ragweed. Clin Immunol 2002; 102: 28–36.

    Article  CAS  PubMed  Google Scholar 

  33. Han X, Fan Y, Wang S, Yang J, Bilenki L, Qiu H et al. Dendritic cells from Chlamydia-infected mice show altered Toll-like receptor expression and play a crucial role in inhibition of allergic responses to ovalbumin. Eur J Immunol 2004; 34: 981–989.

    Article  CAS  PubMed  Google Scholar 

  34. Han X, Wang S, Fan Y, Yang J, Jiao L, Qiu H et al. Chlamydia infection induces ICOS ligand-expressing and IL-10-producing dendritic cells that can inhibit airway inflammation and mucus overproduction elicited by allergen challenge in BALB/c mice. J Immunol 2006; 176: 5232–5239.

    Article  CAS  PubMed  Google Scholar 

  35. Han X, Fan Y, Wang S, Jiao L, Qiu H, Yang X . NK cells contribute to intracellular bacterial infection-mediated inhibition of allergic responses. J Immunol 2008; 180: 4621–4628.

    Article  CAS  PubMed  Google Scholar 

  36. Jiao L, Han X, Wang S, Fan Y, Yang M, Qiu H et al. Imprinted DC mediate the immune-educating effect of early-life microbial exposure. Eur J Immunol 2009; 39: 469–480.

    Article  CAS  PubMed  Google Scholar 

  37. Yang X, Wang S, Fan Y, Han X, Yang J, Chen L . Mycobacterial infection inhibits established allergic responses by modifying cytokine production and adhesion molecule expression. Immunology 2002; 105: 336–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bilenki L, Gao X, Wang S, Yang J, Fan Y, Han X et al. Dendritic cells from Mycobacteria-infected mice inhibits established allergic airway inflammatory responses to ragweed via IL-10- and IL-12-secreting mechanisms. J Immunol 2010; 184: 7288–7296.

    Article  CAS  PubMed  Google Scholar 

  39. Ramsey CD, Celedon JC . The hygiene hypothesis and asthma. Curr Opin Pulm Med 2005; 11: 14–20.

    Article  PubMed  Google Scholar 

  40. Linneberg A, Ostergaard C, Tvede M, Andersen LP, Nielsen NH, Madsen F et al. IgG antibodies against microorganisms and atopic disease in Danish adults: the Copenhagen Allergy Study. J Allergy Clin Immunol 2003; 111: 847–853.

    Article  CAS  PubMed  Google Scholar 

  41. Rennie DC, Lawson JA, Kirychuk SP, Paterson C, Willson PJ, Senthilselvan A et al. Assessment of endotoxin levels in the home and current asthma and wheeze in school-age children. Indoor Air 2008; 18: 447–453.

    Article  CAS  PubMed  Google Scholar 

  42. Dahl ME, Dabbagh K, Liggitt D, Kim S, Lewis DB . Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells. Nat Immunol 2004; 5: 337–343.

    Article  CAS  PubMed  Google Scholar 

  43. Park JH, Gold DR, Spiegelman DL, Burge HA, Milton DK . House dust endotoxin and wheeze in the first year of life. Am J Respir Crit Care Med 2001; 163: 322–328.

    Article  CAS  PubMed  Google Scholar 

  44. Hogg JC . Childhood viral infection and the pathogenesis of asthma and chronic obstructive lung disease. Am J Respir Crit Care Med 1999; 160: S26–S28.

    Article  CAS  PubMed  Google Scholar 

  45. Cramer C, Link E, Horster M, Koletzko S, Bauer CP, Berdel D et al. Elder siblings enhance the effect of filaggrin mutations on childhood eczema: results from the 2 birth cohort studies LISAplus and GINIplus. J Allergy Clin Immunol 2010; 125: 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu Z, Oh SY, Zheng T, Kim YK . Immunomodulating effects of endotoxin in mouse models of allergic asthma. Clin Exp Allergy 2010; 40: 536–546.

    Article  CAS  PubMed  Google Scholar 

  47. Romagnani S . Immunologic influences on allergy and the Th1/Th2 balance. J Allergy Clin Immunol 2004; 113: 395–400.

    Article  CAS  PubMed  Google Scholar 

  48. Garn H, Renz H . Epidemiological evidence for the hygiene hypothesis. Immunobiology 2007; 212: 441–452.

    Article  CAS  PubMed  Google Scholar 

  49. McKee AS, Pearce EJ . CD25+CD4+ cells contribute to Th2 polarization during helminth infection by suppressing Th1 response development. J Immunol 2004; 173: 1224–1231.

    Article  CAS  PubMed  Google Scholar 

  50. Wohlleben G, Trujillo C, Muller J, Ritze Y, Grunewald S, Tatsch U et al. Helminth infection modulates the development of allergen-induced airway inflammation. Int Immunol 2004; 16: 585–596.

    Article  CAS  PubMed  Google Scholar 

  51. Yang J, Zhao J, Yang Y, Zhang L, Yang X, Zhu X et al. Schistosoma japonicum egg antigens stimulate CD4 CD25 T cells and modulate airway inflammation in a murine model of asthma. Immunology 2006; 120: 8–18.

    Article  PubMed  CAS  Google Scholar 

  52. Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH et al. Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 2002; 8: 1024–1032.

    Article  CAS  PubMed  Google Scholar 

  53. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G . Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med 2001; 193: 1303–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Bandeira A . On the ontogeny and physiology of regulatory T cells. Immunol Rev 2001; 182: 5–17.

    Article  CAS  PubMed  Google Scholar 

  55. Wan YY, Flavell RA . Indentifying Foxp3-epxressing suppressor T cells with bicistronic reporter. PNAS 2005; 102: 5126–5131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Apostolou I, von Boehmer H . In vivo instruction of suppressor commitment in naïve T cells. J Ex Med 2004; 199: 1401–1408.

    Article  CAS  Google Scholar 

  57. Stock P, Akbari O, Berry G, Freeman GJ, Dekruyff RH, Umetsu DT . Induction of T helper type 1-like regulatory cells that express Foxp3 and protect against airway hyper-reactivity. Nat Immunol 2004; 5: 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  58. Kitagaki K, Businga TR, Racila D, Elliott DE, Weinstock JV, Kline JN . Intestinal helminths protect in a murine model of asthma. J Immunol 2006; 177: 1628–1635.

    Article  CAS  PubMed  Google Scholar 

  59. Wilson MS, Taylor MD, Balic A, Finney CA, Lamb JR, Maizels RM . Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 2005; 202: 1199–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bashir ME, Andersen P, Fuss IJ, Shi HN, Nagler-Anderson C . An enteric helminth infection protects against an allergic response to dietary antigen. J Immunol 2002; 169: 3284–3292.

    Article  CAS  PubMed  Google Scholar 

  61. Wohlleben G, Trujillo C, Muller J, Ritze Y, Grunewald S, Tatsch U, Erb KJ . Helminth infection modulates the development of allergen-induced airway inflammation. Int Immunol 2004; 16: 585–596.

    Article  CAS  PubMed  Google Scholar 

  62. Montagnoli C, Fallarino F, Gaziano R, Bozza S, Bellocchio S, Zelante T et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 2006; 176: 1712–1723.

    Article  CAS  PubMed  Google Scholar 

  63. Liu P, Li J, Yang X, Shen Y, Zhu Y, Wang S et al. Helminth infection inhibits airway allergic reaction and dendritic cells are involved in the modulation process. Parasite Immunol 2010; 32: 57–66.

    Article  CAS  PubMed  Google Scholar 

  64. McGuirk P, McCann C, Mills KH . Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002; 195: 221–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zuany-Amorim C, Manlius C, Trifilieff A, Brunet LR, Rook G, Bowen G et al. Long-term protective and antigen-specific effect of heat-killed Mycobacterium vaccae in a murine model of allergic pulmonary inflammation. J Immunol 2002; 169: 1492–1499.

    Article  CAS  PubMed  Google Scholar 

  66. Zuany-Amorim C, Sawicka E, Manlius C, Le Moine A, Brunet LR, Kemeny DM et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 2002; 8: 625–629.

    Article  CAS  PubMed  Google Scholar 

  67. Pulendran B, Tang H, Denning TL . Division of labor, plasticity, and crosstalk between dendritic cell subsets. Curr Opin Immunol 2008; 20: 61–67.

    Article  CAS  PubMed  Google Scholar 

  68. Asselin-Paturel C, Brizard G, Pin JJ, Briere F, Trinchieri G . Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 2003; 171: 6466–6477.

    Article  CAS  PubMed  Google Scholar 

  69. Wu L, Liu YJ . Development of dendritic cell lineages. Immunity 2007; 26: 741–750.

    Article  CAS  PubMed  Google Scholar 

  70. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML . T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999; 20: 561–567.

    Article  CAS  PubMed  Google Scholar 

  71. Willems F, Vollstedt S, Suter M . Phenotype and function of neonatal DC. Eur J Immunol 2009; 39: 26–35.

    Article  CAS  PubMed  Google Scholar 

  72. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC . Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 1998; 160: 4587–4595.

    CAS  PubMed  Google Scholar 

  73. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 5: 919–923.

    Article  CAS  PubMed  Google Scholar 

  74. Maldonado-Lopez R, de Smedt T, Pajak B, Heirman C, Thielemans K, Leo O et al. Role of CD8alpha+ and CD8alpha dendritic cells in the induction of primary immune responses in vivo. J Leukoc Biol 1999; 66: 242–246.

    Article  CAS  PubMed  Google Scholar 

  75. Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999; 96: 1036–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Edwards AD, Manickasingham SP, Sporri R, Diebold SS, Schulz O, Sher A et al. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J Immunol 2002; 169: 3652–3660.

    Article  CAS  PubMed  Google Scholar 

  77. Manickasingham SP, Edwards AD, Schulz O, Reis e Sousa C . The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals. Eur J Immunol 2003; 33: 101–107.

    Article  CAS  PubMed  Google Scholar 

  78. Hilkens C, Snijders A, Vermeulen H, van der Meide P, Wierenga E, Kapsenberg M . Accessory cell-derived interleukin-12 and prostaglandin E2 determine the level of interferon-gamma produced by activated human CD4+ T cells. Ann NY Acad Sci 1996; 795: 349–350.

    Article  CAS  PubMed  Google Scholar 

  79. Hilkens CM, Snijders A, Vermeulen H, van der Meide PH, Wierenga EA, Kapsenberg ML . Accessory cell-derived IL-12 and prostaglandin E2 determine the IFN-gamma level of activated human CD4+ T cells. J Immunol 1996; 156: 1722–1727.

    CAS  PubMed  Google Scholar 

  80. Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML . Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 1998; 161: 2804–2849.

    CAS  PubMed  Google Scholar 

  81. Kalinski P, Hilkens CM, Schuitemaker JH, Kapsenberg ML . Prostaglandin E2 promotes the generation of dendritic antigen-presenting cells that induce type 2 cytokines in Th cells. J Immunol 1997; 159: 28–35.

    CAS  PubMed  Google Scholar 

  82. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH . Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997; 159: 4772–4780.

    CAS  PubMed  Google Scholar 

  83. Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE et al. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 1999; 162: 6473–6481.

    CAS  PubMed  Google Scholar 

  84. Buelens C, Willems F, Delvaux A, Pierard G, Delville JP, Velu T et al. Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol 1995; 25: 2668–2672.

    Article  CAS  PubMed  Google Scholar 

  85. Takeuchi M, Kosiewicz MM, Alard P, Streilein JW . On the mechanisms by which transforming growth factor-beta 2 alters antigen-presenting abilities of macrophages on T cell activation. Eur J Immunol 1997; 27: 1648–1656.

    Article  CAS  PubMed  Google Scholar 

  86. Rescigno M, Granucci F, Citterio S, Foti M, Ricciardi-Castagnoli P . Coordinated events during bacteria-induced DC maturation. Immunol Today 1999; 20: 200–203.

    Article  CAS  PubMed  Google Scholar 

  87. Suss G, Shortman K . A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 1996; 183: 1789–1796.

    Article  CAS  PubMed  Google Scholar 

  88. Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF, Wu L et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J Exp Med 1992; 176: 47–58.

    Article  CAS  PubMed  Google Scholar 

  89. Groux H, Bigler M, de Vries JE, Roncarolo MG . Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 1996; 184: 19–29.

    Article  CAS  PubMed  Google Scholar 

  90. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH . CD4+ and CD8+ anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 2002; 99: 2468–2476.

    Article  CAS  PubMed  Google Scholar 

  91. Levings MK, Bacchetta R, Schulz U, Roncarolo MG . The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002; 129: 263–276.

    Article  CAS  PubMed  Google Scholar 

  92. Rutella S, Danese S, Leone G . Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 2006; 108: 1435–1440.

    Article  CAS  PubMed  Google Scholar 

  93. Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH et al. IDO activates regulatory T cells and blocks their conversion into Th17-like T cells. J Immunol 2009; 183: 2475–2483.

    Article  CAS  PubMed  Google Scholar 

  94. Levings MK, Sangregorio R, Galbiati F, Squadrone S, de Waal Malefyt R, Roncarolo MG . IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol 2001; 166: 5530–5539.

    Article  CAS  PubMed  Google Scholar 

  95. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N . Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH . Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McGuirk P, McCann C, Mills KH . Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002; 195: 221–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF et al. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 2002; 195: 603–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heath VL, Murphy EE, Crain C, Tomlinson MG, O'Garra A . TGF-beta1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 2000; 30: 2639–2649.

    Article  CAS  PubMed  Google Scholar 

  100. Gorczynski R, Bransom J, Cattral M, Huang X, Lei J, Min W et al. Dendritic cells expressing TGFbeta/IL-10, and CHO cells with OX-2, increase graft survival. Transplant Proc 2001; 33: 1565–1566.

    Article  CAS  PubMed  Google Scholar 

  101. Wakkach A, Cottrez F, Groux H . Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J Immunol 2001; 167: 3107–3113.

    Article  CAS  PubMed  Google Scholar 

  102. Lu L, Bonham CA, Liang X, Chen Z, Li W, Wang L et al. Liver-derived DEC205+B220+CD19 dendritic cells regulate T cell responses. J Immunol 2001; 166: 7042–7052.

    Article  CAS  PubMed  Google Scholar 

  103. Njau F, Geffers R, Thalmann J, Haller H, Wagner AD . Restriction of Chlamydia pneumoniae replication in human dendritic cell by activation of indoleamine 2,3-dioxygenase. Microbes Infect 2009; 11: 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  104. Adams VC, Hunt JR, Martinelli R, Palmer R, Rook GA, Brunet LR . Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice. Eur J Immunol 2004; 34: 631–638.

    Article  CAS  PubMed  Google Scholar 

  105. Bilenki L, Wang SH, Yang J, Fan YJ, Jiao L, Joyee AG et al. Adoptive transfer of CD8alpha+ dendritic cells (DC) isolated from mice with Chlamydia trachomatis are more potent in inducing protective immunity than CD8alpha DC. J Immunol 2006; 177: 7067–7075.

    Article  CAS  PubMed  Google Scholar 

  106. Schröder NW, Crother TR, Naiki Y, Chen S, Wong MH, Yilmaz A et al. Innate immune responses during respiratory tract infection with a bacterial pathogen induce allergic airway sensitization. J Allergy Clin Immunol 2008; 122: 595–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Horvat JC, Starkey MR, Kim RY, Phipps S, Gibson PG, Beagley KW et al. Early-life chlamydial lung infection enhances allergic airways disease through age-dependent differences in immunopathology. J Allergy Clin Immunol 2010; 125: 617–625.

    Article  PubMed  Google Scholar 

  108. Vazquez-Tello A, Semlali A, Chakir J, Martin JG, Leung DY, Eidelman DH et al. Induction of glucocorticoid receptor-beta expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. Clin Exp Allergy 2010; 40: 1312–1322.

    Article  CAS  PubMed  Google Scholar 

  109. Agache I, Ciobanu C, Agache C, Anghel M . Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med 2010; 104: 1131–1137.

    Article  PubMed  Google Scholar 

  110. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E . Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 2001; 357: 1076–1079.

    Article  CAS  PubMed  Google Scholar 

  111. Kalliomaki M, Salminen S, Poussa T, Isolauri E . Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol 2007; 119: 1019–1021.

    Article  PubMed  Google Scholar 

  112. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 2007; 119: 192–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by operating grants from the Canadian Institutes for Health Research (CIHR) and the Manitoba Health Research Council (MHRC) to XY. XY is the Canada Research Chair in Infection and Immunity. XG is a recipient of the MHRC studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Gao, X. Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol 8, 12–18 (2011). https://doi.org/10.1038/cmi.2010.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.51

  • Springer Nature Limited

Keywords

This article is cited by

Navigation