Skip to main content

Advertisement

Log in

Ultraviolet vision

The colourful world of the mantis shrimp

  • Brief Communication
  • Published:

From Nature

View current issue Submit your manuscript

The colour-vision system of these crustaceans includes four types of UV photoreceptor.

Abstract

Humans cannot see ultraviolet light, but many arthropods and vertebrates can because they have a single photo-receptor with a peak sensitivity to light at wavelengths of around 350 nanometres (ref. 1). Here we use electrophysiological methods to investigate the vision of the mantis shrimp, Neogonodactylus oerstedii. We find that this marine crustacean has at least four types of photoreceptor for ultraviolet light that are located in cells of the eye known as R8 cells. These photoreceptors are maximally sensitive to light of wavelengths 315, 330, 340 and 380 nm. Together with previous evidence2, this finding indicates that the remarkable colour-vision system in these stomatopod crustaceans may be unique, as befits their habitat of kaleidoscopically colourful tropical coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: R8 photoreceptors in the midband of the stomatopod eye have multiple UV sensitivities
Figure 2: The multiple ultraviolet sensitivities are caused by several different rhodopsins that are heavily filtered.

Similar content being viewed by others

References

  1. Tovee, M. J. Trends Ecol. Evol. 10, 455–460 (1995).

    CAS  PubMed  Google Scholar 

  2. Cronin, T. W. & Marshall, N. J. Nature 339, 137–140 (1989).

    ADS  Google Scholar 

  3. Smith, R. C. & Baker, K. S. Appl. Optics 20, 177–184 (1981).

    ADS  CAS  Google Scholar 

  4. Marshall, N. J. Nature 333, 557–560 ( 1988).

    ADS  CAS  PubMed  Google Scholar 

  5. Marshall, N. J. et al. Phil. Trans. R. Soc. Lond. B 334, 33 –56 (1991).

    ADS  Google Scholar 

  6. Cronin, T. W. et al. Vision Res. 34, 2639– 2656 (1994).

    CAS  PubMed  Google Scholar 

  7. Hart, N. S., Partridge, J. C. & Cuthill, I. C. J. Exp. Biol. 201, 1433– 1446 (1998).

    PubMed  Google Scholar 

  8. Hardie, R. C. Trends Neurosci. 9, 419–423 (1986).

    MathSciNet  Google Scholar 

  9. Arikawa, K. et al. Vision Res. 39, 1– 8 (1999).

    CAS  PubMed  Google Scholar 

  10. Cronin, T. W. & Marshall, N. J. J. Comp. Physiol. A 166, 261–275 (1989).

    Google Scholar 

  11. Neumeyer, C. in Vision and Visual Dysfunction: Evolution of the Eye and Visual System Vol. 2 (eds Cronly-Dillon, J. R. & Gregory, R. L.) 284– 305 (Macmillan, London, 1991).

    Google Scholar 

  12. Osorio, D., Marshall, N. J. & Cronin, T. W. Vision Res. 37, 3299– 3309 (1997).

    CAS  PubMed  Google Scholar 

  13. Caldwell, R. L. & Dingle, H. Sci. Am. 234, 80–89 (1976).

    ADS  Google Scholar 

  14. Marshall, N. J., Jones, J. P. & Cronin, T. W. J. Comp. Physiol. A 179, 473 –481 (1996).

    ADS  Google Scholar 

  15. Vorobyev, M., Osorio, D., Bennett, A. T. D. & Cuthill, I. C. J. Comp. Physiol. A 183, 621–633 (1998).

    CAS  PubMed  Google Scholar 

  16. Seliger, H. H., Lall, A. B. & Biggley, W. H. J. Comp. Physiol. A 175, 475 –486 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, J., Oberwinkler, J. The colourful world of the mantis shrimp . Nature 401, 873–874 (1999). https://doi.org/10.1038/44751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/44751

  • Springer Nature Limited

This article is cited by

Navigation